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Abstract:

Unsupervised Skill Discovery (USD) allows agents to autonomously learn diverse

behaviors without task-specific rewards. While recent USD methods have shown

promise, their application to real-world robotics remains underexplored. In this

paper, we propose a modular USD framework to address the challenges in the safety,

interpretability, and deployability of the learned skills. Our approach employs user-

defined factorization of the state space to learn disentangled skill representations.

It assigns different skill discovery algorithms to each factor based on the desired

intrinsic reward function. To encourage structured morphology-aware skills, we

introduce symmetry-based inductive biases tailored to individual factors. We also

incorporate a style factor and regularization penalties to promote safe and robust

behaviors. We evaluate our framework in simulation using a quadrupedal robot and

demonstrate zero-shot transfer of the learned skills to real hardware. Our results

show that factorization and symmetry lead to the discovery of structured human-

interpretable behaviors, while the style factor and penalties enhance safety and

diversity. Additionally, we show that the learned skills can be used for downstream

tasks and perform on par with oracle policies trained with hand-crafted rewards. For

code and videos, please check: https://leggedrobotics.github.io/d3-skill-discovery/.
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1 Introduction

Reinforcement learning (RL) has achieved remarkable success across a range of real-world robotics

applications [1, 2, 3]. However, these successes typically depend on carefully prespecified reward

functions. Designing such rewards for a large number of tasks demands significant engineering effort

and often becomes increasingly complex as task difficulty grows. Unsupervised Skill Discovery

(USD) seeks to address these challenges by training agents to autonomously acquire a diverse

repertoire of behaviors, or skills, without relying on handcrafted rewards. These skills can then be

reused or fine-tuned to solve downstream tasks more efficiently.

Current USD approaches use an intrinsic reward function to generate training signals to acquire

task-agnostic behaviors. These intrinsic rewards are typically formulated as different variants of

mutual information (MI) between the agent’s state s and its latent skill representation z. For instance,

DIAYN [4] optimizes a variational lower bound on the MI, while METRA [5] uses a Wasserstein

variant of the MI. Furthermore, Hu et al. [6] show that factorizing (s, z) facilitates more interpretable

and controllable skills. Despite these advances, most USD research remains confined to simulation,

with limited demonstrations on real-world robotic systems.

A core limitation in USD lies in the exclusive reliance on intrinsic rewards: while these encourage

exploration and behavioral diversity, they offer no feedback on whether the learned behaviors are

safe, stable, or physically feasible on real hardware. As a result, the behaviors learned by many USD

approaches tend to be overly aggressive or unsafe. Although some works [7, 8] have demonstrated
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Figure 1: Approach overview. The agent’s state s is factorized by the user into N components, each paired with
a latent skill zi and an intrinsic reward ri, selected from METRA or DIAYN objectives. An extrinsic reward rstyle

promotes safe behaviors. The factor weights λ allow the agent to prioritize certain factors during training. The
policy π is trained using on-policy RL with symmetry augmentation to discover structured, morphology-aware
skills. The resulting skills are interpretable, robust, and can be commanded by a human operator.

unsupervised skill deployment on hardware, they usually focus on constrained or simplified scenarios.

Efforts to improve safety in USD [9, 10] have also made progress, but often trade off between safety,

skill diversity, and scalability. Overcoming these challenges is essential for advancing USD from an

exploratory paradigm to a practical tool for developing robotic systems.

In this work, we present a factorized skill discovery framework that selectively applies USD

algorithms across different state dimensions defined by the user (Fig. 1). The core idea is that the

desired form of diversity often depends on the specific subset of the state space and the chosen

USD algorithm. For instance, in our experiments, we observe that METRA excels at improving

the state coverage on unbounded state factors such as planar position, while DIAYN is better suited

for bounded state factors, such as the robot’s orientation, where continuous drift is impossible. Our

design effectively takes advantage of these individual benefits while also exploiting the symmetry

in the robot’s morphology. By extending this symmetry to the skill space, the framework encourages

the discovery of more structured skills. To address the critical issue of deployability, we propose

two additional mechanisms. First, we introduce an additional style factor, which is an extrinsic signal

that shapes the agent’s behavior toward safe and stable actions. Second, we develop a skill weighting

mechanism that facilitates the handling of conflicting skills and allows their balanced adjustment

during deployment. Using this framework, we demonstrate the discovery of diverse quadrupedal

skills that are learned entirely in simulation and can be safely deployed on real hardware.

2 Related Work

Unsupervised Skill Discovery. The goal of USD is to extract task-agnostic behaviors from intrinsic

rewards. Eysenbach et al. [4] maximize the lower bound on MI between skills and states via a learned

discriminator, while Sharma et al. [11] add transition dynamics to encourage more kinetic skills.

Optimistic exploration through discriminator ensembles [12] further enhances the state coverage.

This is complementary to the problem of exploration, where the goal is to maximize coverage, often

regularized by task reward [13, 14, 15, 16, 17], or maximize information gain [18]. An alternate line

of work replaces the MI objective with a Wasserstein dependency measure (WDM). METRA [5] and

its variants [19, 20, 21] maximize the directed distance in a learned latent space, resulting in highly

dynamic state-covering skills. To increase interpretability of learned skills, DUSDi [6] factorizes

the state and skill spaces and applies DIAYN per factor with an entanglement penalty. Subsequent

work [22] extends this by using inter-factor dependency graphs to discover interaction-focused

skills. Our proposed framework generalizes the factorization idea in DUSDi by allowing different

USD objectives per state factor, letting each dimension exploit the most suitable notion of diversity.

Additionally, we inject robot morphology-based symmetry priors [23, 24, 25] into the latent skills

and introduce factor weights to coordinate potentially conflicting skills.
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Deployment of USD. Most USD studies remain mainly in simulation; only a few consider real robots.

Kim et al. [10] bias METRA with labeled desirable and undesirable trajectories, while Atanassov

et al. [8] combine a norm-matching objective with hand-crafted rewards to transfer discovered

locomotion skills to a quadruped. Cheng et al. [26] utilize DOMiNO [27] to learn diverse solutions

for navigation tasks, while still relying on explicit task rewards. Further efforts [28, 29] have been

made in constructing offline task-regularized USD algorithms by leveraging the Fenchel duality.

Sharma et al. [7] show that basic locomotion skills can be learned directly on hardware with an

off-policy version of DADS. However, the learned skills are relatively simple (planar locomotion)

and contain undesirable motion artifacts. Unlike prior work relying on supervision or task rewards,

we deploy intrinsically learned skills by combining a style factor, global regularization, and per-factor

weighting, which balances safety with skill diversity.

3 Background

Symmetric Factored MDP. In this work, we consider a symmetric factored MDP. A factored

MDP [6] is defined as the tuple M(S,A, T , R), where the state space S = S1 × · · · × SN is

factorized into N factors. Each state s ∈ S consists of N state factors: s = [s1; . . . ; sN ], si ∈ Si.

The action space and transition kernel are denoted by A and T : S × A → ∆(S) respectively,

where ∆(·) denotes the probability simplex. The goal of USD is to learn a skill-conditioned policy

πθ : S × Z → ∆(A) that results in diverse, useful, and distinguishable behaviors (i.e., skills). This

is typically achieved by maximizing a certain information objective, such as the mutual information

(MI) between states and latent skills. Following the factored MDP, the skill space Z = Z1×· · ·×ZN

is also factorized, with the disentangled skill component zi only affecting the state factor si. The

skills are sampled from a prior distribution z ∼ p(z) = ΠN
i=1p(zi). The MI objective results in a

reward function R : S × Z ×A → R, which can be maximized using standard RL [30, 31].

Intuitively, a symmetric MDP [32] means the dynamics and rewards are preserved under a set of

transformations over the state and action spaces, such as a left-right reflection. An MDP has a

K-fold symmetry if a set of K distinct transformations exist under which the transition dynamics is

equivariant and the reward model is invariant. Extending this definition to USD, the transformations

also need to be defined over the skill space. Let the functions Mk
s : S → S, Mk

a : A → A and

Mk
z : Z → Z define the k-th transformation functions for states, actions and skills, respectively.

The MDP M is symmetric if ∀k ∈ 1, . . . ,K, s, s′ ∈ S, a ∈ A and z ∈ Z , the transition model

T (s′ | s,a) = T (Mk
s (s

′) | Mk
s (s),M

k
a (a)) is equivariant, and the reward model R(s,a, z) =

R(Mk
s (s),M

k
a (a),M

k
z (z)) and the skill prior p(z) = p(Mk

z (z)) are invariant. It is important to

note that the mirror functions Mk
s and Mk

a are determined solely based on the transition model (i.e.,

the robot’s morphology), while the mirror function for the skills Mk
z must be defined in a way that

the symmetry condition holds. These choices are discussed in Sec. 4.

MI-based USD Rewards. Our framework utilizes two algorithms: DIAYN [4] and METRA [5].

DIAYN maximizes MI, I(S;Z) ≜ DKL(p(s, z)∥p(s)p(z)), using a learned discriminator qφ(z|s)
that approximates the posterior p(z|s), yielding the reward rDIAYN(s, z) = log qφ(z|s)− log p(z).

METRA replaces MI with WDM: IW(S;Z) ≜ W(p(s, z), p(s)p(z)) under a temporal distance

metric. It trains φ(s) and uses the reward rMETRA(s, z, s
′) = (φ(s′)− φ(s))⊤z to align latent state

transitions with the skill vector. Additional details are in App. A.1.

4 Method

Our approach builds on the idea of factorizing the latent skill vector z to create independent and

disentangled skill components. Building on the notion of factored MDPs, we extend the framework

from Hu et al. [6] to support different intrinsic objectives and include a style objective to promote

deployable behaviors. This flexibility enables behavior-specific inductive biases by applying the

most suitable USD algorithm per factor. To further enhance control and coordination between

skill components, we introduce a scalar weight for each factor, which allows prioritizing specific

components during training and effectively resolving conflicts between simultaneously learned skills.
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Algorithm 1: Skill Discovery Procedure

Factorize state space S = S1 × · · · × SN

Factorize skill space Z = Z1 × · · · × ZN

Define skill prior p(z) and weighting prior p(λ)
Define style reward rstyle and regularization reward rreg

Define symmetry mirroring functions M = (Ms,Ma,Mz)
Select USD algorithm per factor USDi ∈ {METRA,DIAYN}

Initialize πθ , {Vi}
N

i=1, Vstyle

while not converged do
Sample skill z ∼ p(z) and weights λ ∼ p(λ) every k steps
Sample action a ∼ πθ(a|s, z, λ)
Collect on-policy samples (s, s′,a, z, λ, r)
Augment the dataset by mirroring each sample
Update all USDi and Vi with the augmented samples
Compute advantages Ai for each factorized value function

Compute weighted sum of advantages A =
∑

N+1

i=1
λiAi

Update πθ based on A using any on-policy RL algorithm
end while

Figure 2: Proposed algorithm for skill discovery. The agent πθ , conditioned on a sampled skill z and factor
weights λ, collects transitions and receives a total reward combining per-factor intrinsic rewards and a style
reward. The transitions are then augmented via symmetry-based mirroring, after which the intrinsic reward
models, factorized value functions, and policy are updated using on-policy RL.

More formally, the objective for the skill-conditioned policy πθ is to maximize

J (θ) =

N
∑

i=1

λiIUSDi
(Si,Zi) + λN+1Jstyle(S,A), (1)

where λ = [λi]
N+1
i=1 is the factor weighting vector, which assigns relative importance to individual

objectives. The per-factor objective IUSDi
depends on the selected USD algorithm for that factor.

In this work, we consider this objective based on DIAYN with disentanglement penalty [6, 4] or

METRA [5]. The objective Jstyle includes extrinsic rewards for neutral skills, such as standing

stationary. In the remainder of the section, we provide further details on these individual components.

Factor Weighting. When we disentangle the skill space through factorization, each skill dimension

(or factor) is intended to control a distinct and ideally independent aspect of the agent’s behavior.

However, in practice, state dependencies between factors can lead to behavioral conflicts. For

example, skill factors for standing still and moving forward cannot be executed simultaneously

without interference. This issue leads to poorer coverage of the learned skill factors [6]. To manage

potential conflicts between skill factors, we introduce factor weights λ ∈ R
N+1, where each λi ≥ 0

and ∥λ∥2 = 1. These weights modulate the relative importance of each intrinsic reward, arising

from IUSDi
, as well as any extrinsic rewards. By conditioning the policy πθ on λ, the agent can

dynamically prioritize the skill factors. During training, we sample λ by normalizing a vector of i.i.d.

positive values from a truncated Gaussian, ensuring the norm constraint is satisfied.

Style Factor and Regularization Penalties. To improve the deployability of unsupervised skills,

prior work [8] incorporates two types of extrinsic rewards, one for smoothness and one for aesthetic

behavior. However, applying both rewards uniformly can overconstrain skill discovery and limit

diversity. To address this, we separate these signals. We introduce an additional factor that provides

a neutral “style” reward that depends on the robot’s configuration. For a quadruped, this reward

may encourage the robot to maintain a stable posture, such as standing still. Treating this as a

separate factor allows the agent to learn a safe fallback skill and benefit from a soft inductive bias

during learning. Since the style factor is included in the policy input, its influence can be modulated

dynamically via the weighting mechanism, enabling the agent to stay near safe behaviors when

needed, while still exploring meaningfully under intrinsic objectives.

We apply global regularization penalties to reduce joint torques and velocities and enforce physical

constraints such as joint limits. Unlike the style factor, these are applied uniformly across all skills

and are not part of the policy input. They promote safety and support hardware deployment.
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The resulting reward is defined as: r(s,a, z) =
∑N

i=1 λirUSDi
(si, zi)+λN+1rstyle(s,a)+rreg(s,a),

where rstyle and rreg correspond to the two types of extrinsic rewards. In practice, because the

magnitudes of the individual USD and style rewards can differ, we apply exponential moving average

(EMA) normalization to them to stabilize the training. Following [22], we adopt value function

decomposition, training a separate value function for each reward term. These are then combined

using the factor weights to compute the overall advantage function, as explained in Fig. 2.

Symmetry Augmentation. Following Mittal et al. [25] and Sec. 3, we promote symmetry by

augmenting the collected transitions by mirroring: (s,a, z, r) → {(Mk
s (s),M

k
a (a),M

k
z (z), r)}

K
k=1.

Since the USD rewards rUSDi
are outputs of neural networks, they may not inherently respect the

symmetry invariance. One way to enforce symmetry is by averaging the reward over mirrored

samples: 1
K

∑K
k=1 rUSDi

(Mk
s (s),M

k
a (a),M

k
z (z)). However, in practice, we found that it suffices

to train all networks (actor, critics, discriminators, and encoders) on symmetry-augmented data to

induce approximate symmetry in both the learned reward signal and the agent’s behavior.

The central challenge in combining USD with symmetry augmentation lies in defining Mz such that

invariance in the prior distribution and composition are respected. For instance, if in the state space

M1
s = M2

s ◦M3
s (where ◦ denotes function composition), then in the skill space M1

z should also be

equal to M2
z ◦M3

z . DIAYN priors are typically invariant to coordinate permutations, while METRA’s

isotropic priors are direction-invariant. Thus, the mirroring function Mz can be realized as coordinate

permutations for DIAYN and optional sign flips for METRA. More details are in App. A.2.

As a concrete example of a permutation-based skill mirroring function, consider a factored MDP

with K symmetries. For each state factor i, we assign a corresponding skill factor of dimension

dim(Zi) = n · K, where n ∈ N
+ is a hyperparameter. The factor skill is partitioned as zi =

[zi,1; · · · ; zi,K ], with dim(zi,k) = n. We define Mz as permuting these K sub-skills. A convenient

choice is to let the permutations realize a Latin square [33], where every sub-skill cycles through

every position exactly once in a way that respects composition. For a robotic agent with its four-fold

symmetries, we can define the symmetry transformations as:

M1
z (zi) = [zi,1; zi,2; zi,3; zi,4], M2

z (zi) = [zi,3; zi,4; zi,1; zi,2],

M3
z (zi) = [zi,2; zi,1; zi,4; zi,3], M4

z (zi) = [zi,4; zi,3; zi,2; zi,1],

which leaves the prior distribution unchanged and satisfies the desired composition rule.

Importantly, in METRA, each skill zi is interpreted as a direction in the learned projected state

space. Shuffling coordinates or adding redundant dimensions undermines the geometric meaning

and continuity of the skills. To preserve this structure, we use a low-dimensional representation (at

most three coordinates d ≤ 3) per factor and define the mirroring operation to match that of the

corresponding state factor. This ensures that symmetry transformations in the skill space remain

consistent with those in the state space, preserving the directional semantics critical to METRA.

Skill Prior and Curriculum. For factors trained with METRA, skills are initially sampled uniformly

from the unit hypersphere zi ∼ U(Sd−1). Training begins with the default METRA alignment

objective and gradually transitions to the norm-matching objective proposed by Atanassov et al. [8].

The alignment objective provides a more interpretable and stable learning signal early on, facilitating

initial skill acquisition. As training progresses, switching to the norm-matching objective increases

the expressiveness of the skill space by allowing the skill norm to influence execution speed. During

this transition, we update the skill prior by sampling variable-norm skills, enabling finer control

over behavior dynamics. Additional details are in App. A.1. For DIAYN, we sample the skills

from a symmetric Dirichlet prior zi ∼ Dir(α). To emulate the separation of a categorical latent

while retaining continuity, we start with a sparse prior (αk = 0.05), concentrating the probability

mass on a single coordinate. When the discriminator’s accuracy surpasses a preset threshold, every

component is annealed linearly to 1.0, yielding a maximum-entropy Dirichlet (uniform over the

nK − 1 dimensional probability simplex) and enabling smooth skill interpolation.

Skill Switching. Most USD methods fix the latent skill by sampling it once at the start of each

episode. In contrast, we resample the skill multiple times within an episode. Without this resampling,
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Figure 3: Deployment of learned skills on the real robot. The learned structured skill space enables intuitive
and composable control. Each behavior corresponds to a manually commanded skill z, set by adjusting individual
skill factors zi. This results in diverse behaviors: pitching, walking, ducking, rotating and their combinations.
Here we show walking while pitching, and ducking while rotating in the top and bottom rows respectively.

we observe that agents tend to ”lock in” to the initial skill, i.e., even when the skill input is changed

during deployment, the behavior remains unchanged. We hypothesize that this happens because the

agent infers the skill from its state and, upon reaching a rewarding configuration, it chooses to stay

there to maximize the USD reward. Resampling skills during training encourages the agent to remain

responsive to the skill input, resulting in smoother skill switching at test time.

5 Experiments

We consider skill discovery for the quadrupedal robotic platform, ANYmal-D, which has four

symmetries [25]. We train policies on a rough terrain environment with a difficulty-based curriculum

that depends on state coverage. The state space is factorized into base position, linear velocity,

heading rate, base height, and base roll and pitch. Depending on the evaluation setup, we use different

subsets of these factors and assign varying algorithm combinations to evaluate their effects. All

training is carried out in simulation using Isaac Lab [34] with 2048 environments. On an NVIDIA

RTX 3090, the training converges within a day. For additional training details, please check App. A.3.

Deployment of Learned Skills. We demonstrate the structured nature of the learned skill

space by manually commanding individual skill dimensions on the real robot. As shown in

Fig. 3, each skill aligns with a specific state factor and can be composed intuitively. The

framework captures symmetries in behavior, for example, forward and backward walking,

or tilting in opposite directions, while the style factor enables stable behaviors like stand-

ing still. Combinations of skills, such as walking while pitching or rotating while crouched,
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Figure 4: Effect of factor weighting on skill metrics.
The metric score (details in App. A.4) reflects either dis-
criminator classification accuracy (state factors) or style
reward (style factor). Incorporating per-factor weights λ
enables the agent to prioritize relevant factors, yielding
consistently higher scores across all dimensions.

further highlight the composability and expres-

siveness of the learned skill space.

Factor Weights. We evaluate the effect of per-

factor weights λ in a setup with four DIAYN-

trained factors (roll-pitch, heading, planar ve-

locity, and height) and the style factor. Fig. 4

shows the skill discriminability and the scaled

style reward. When using weights, each rollout

contributes to the per-factor metrics proportion-

ally to its assigned factor weights, normalized

to avoid numerical bias. The weighted setup

achieves substantially higher scores, showing

that the agent learns to prioritize relevant factors.

This effect is strongest with DIAYN; METRA-

based variants showed smaller gains (App. A.5).
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Table 1: Effect of the style factor on skill metrics and safety. The factor metrics report classification accuracy
for DIAYN and cosine similarity for METRA (with mean ± std over 5 seeds). Illegal contacts show the percentage
of illegal contacts per step for different body parts.

Factor Metrics ↑ % Illegal Contacts per Step ↓

Style Extrinsic Position Heading Base Shank Thigh

Without Style Factor 0.19 ± 0.11 0.27 ± 0.14 0.56 ± 0.04 0.46 ± 0.37 0.75 ± 0.23 4.04 ± 0.06
With Style Factor 0.59 ± 0.04 0.68 ± 0.10 0.72 ± 0.04 0.00 ± 0.00 0.12 ± 0.07 0.03 ± 0.00

Table 2: Comparison against different USD approaches across state factors. Diversity is measured as state
coverage (details in App. A.4) with mean ± std over 5 seeds. Higher values indicate broader skill coverage.

Algorithm Chosen per Factor Diversity per Factor ↑

Approach Position Heading Position Heading

DIAYN DIAYN (dim(z) = 8) 0.389 ± 0.183 1.067 ± 0.532
METRA METRA (dim(z) = 3) 9.832 ± 0.808 0.212 ± 0.018
DUSDi DIAYN (dim(z1) = 4) DIAYN (dim(z2) = 2) 1.363 ± 0.333 1.811 ± 0.084
2xMETRA METRA (dim(z1) = 2) METRA (dim(z2) = 1) 8.836 ± 1.411 0.271 ± 0.078

Mixed (Ours) METRA (dim(z1) = 2) DIAYN (dim(z2) = 2) 8.776 ± 0.667 1.031 ± 0.476

Safety and Extrinsic Rewards. To evaluate the impact of the style factor, we conduct experiments

using METRA for base position and DIAYN for heading rate factor. Two sets of experiments are run,

each with five different random seeds: one with the style factor active, and one with the style factor dis-

abled by setting its weight to zero. From Tab. 1, we observe that the style factor significantly reduces

undesirable contacts and improves discriminability for both position and heading. This suggests it

promotes safer behaviors while regularizing skill learning toward more consistent, interpretable skills.

Comparing Different USD Objectives. To evaluate the flexibility and effect of assigning different

USD algorithms to individual state factors, we compare diversity across various algorithm configura-

tions. We factorize the state into base position and heading rate. In our setup, we use METRA for

position, favoring broad state-space coverage, and DIAYN for heading, encouraging skill separability.

We compare this mixed setup against several baselines: both factors trained with DIAYN (similar

to DUSDi [6] but with a style factor and regularization, denoted as “DUSDi” in the tables), both

with METRA (“2×METRA”), and single-objective baselines where the two factors are combined

into one (i.e., no factorization) and trained with either DIAYN [4] or METRA [5], both with style

and regularization. For evaluating diversity, we follow Zahavy et al. [27] and compute Monte Carlo

estimates of successor representations for each skill and report their standard deviation in Tab. 2.

Higher values indicate broader diversity in the corresponding factor. We observe that METRA

significantly improves diversity in the position factor, while DIAYN achieves higher diversity for the

heading factor. The mix of algorithms per factor outperforms using a single algorithm for all factors.

Symmetric Skill Discovery. To evaluate the effect of symmetry augmentation, we train policies

with and without symmetry bias. We observe that symmetry augmentation does not result in faster

convergence or higher evaluation metrics. Additionally, policies trained with symmetry augmentation

often obtain lower metric scores for factors trained with METRA-style rewards and perform similarly

with DIAYN-style rewards (see App. A.6). This could be due to METRA-based factors being

harder to symmetrize effectively due to the geometric interpretation of the skill, or due to the

augmentation technique being suboptimal compared to more structured methods like Latin Square

symmetry. Nevertheless, symmetry augmentation leads to more interpretable and structured skill-to-

state mappings. For example, when controlling base heading, policies with symmetry learn to rotate

uniformly in both directions, whereas for those without symmetry, the behavior often tends to be

biased. In Fig. 5, we visualize the effect of symmetry augmentation on state space coverage, showing

how learned skills become more symmetrically distributed.

Downstream Task. We assess the utility of the learned skill libraries on a rough-terrain way-

point–navigation task with random position goals (up to 15 m away) and random target headings. We

compare three control schemes: (i) Direct, a basic PPO policy that outputs joint position commands,
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Figure 5: Impact of symmetry augmentation on skill-to-state mappings. Each point shows roll and pitch
angles (in radians) reached by the policy, colored by the commanded skill. Without symmetry augmentation, the
mapping is arbitrary and less structured. With symmetry augmentation, skills align symmetrically across the
factor space, leading to more interpretable and balanced behaviors.

Table 3: Performance on downstream navigation task. Metrics include average reward, tracking errors, and
episode termination ratios: timeouts (exceeding 30s), base collisions, or successful goal-reaching.

Approach Reward ↑ Tracking Error Termination Ratio

Heading ↓ Position ↓ Goal Reached ↑ Base Collision ↓ Time Out

Direct 1.85 ± 0.48 1.56 ± 0.03 11.00 ± 0.12 0.004 ± 0.000 0.996 ± 0.106 0.000 ± 0.000
DIAYN 27.87 ± 2.42 1.34 ± 0.05 7.50 ± 0.26 0.034 ± 0.000 0.000 ± 0.000 0.966 ± 0.000
DUSDi 35.26 ± 3.65 1.36 ± 0.05 6.74 ± 0.31 0.039 ± 0.005 0.001 ± 0.001 0.960 ± 0.004
2xMETRA 32.05 ± 7.73 1.54 ± 0.04 7.05 ± 0.32 0.090 ± 0.052 0.593 ± 0.103 0.317 ± 0.032
METRA 81.62 ± 50.20 1.33 ± 0.14 4.68 ± 2.78 0.300 ± 0.234 0.378 ± 0.532 0.322 ± 0.037
Mixed (Ours) 148.55 ± 29.24 1.03 ± 0.14 1.33 ± 0.27 0.797 ± 0.424 0.012 ± 0.014 0.191 ± 0.185
Oracle 164.37 ± 21.42 1.07 ± 0.17 1.66 ± 0.65 0.871 ± 0.427 0.052 ± 0.031 0.078 ± 0.111

(ii) Oracle, a hierarchical PPO policy with a hand-tuned velocity-tracking controller [35] as the

low-level policy, and (iii) Skill-based, the same hierarchy as the oracle but using pre-trained skill-

conditioned policies (from Tab. 2) as the low-level controller. As shown in Tab. 3, our mixed setup

(using METRA for position, DIAYN for heading) closely matches the oracle, achieving low tracking

error and high success rate. In contrast, direct control fails entirely because of poor structure in the

action space. Mismatched or single-objective USD skill libraries also underperform, underscoring the

importance of appropriate factor–algorithm combinations for downstream performance. Additional

implementation details are in App. A.3.

6 Conclusion

We presented a modular framework for unsupervised skill discovery (USD) that employs user-defined

factorization of the state space and allows assigning different algorithms to each factor. This design

leverages the complementary strengths of USD objectives: METRA excels at exploring unbounded

dimensions like position through latent-space traversal, while DIAYN produces more distinguishable

behaviors on bounded dimensions like heading or orientation. To support real-world deployment, our

framework introduces several key components: a style factor and regularization terms that encourage

safe and stable behaviors; symmetry augmentation that induces morphology-aware structure; and

a factor-weighting mechanism that prioritizes relevant behaviors and resolves conflicts across active

skills. We showed that these components individually contribute to skill quality, and their combination

enables a smooth zero-shot transfer from simulation to hardware as well as intuitive control through

direct skill commands. On downstream navigation tasks, our approach achieves near-oracle

performance and significantly outperforms single or mismatched USD setups, demonstrating

improved sample efficiency. The framework integrates seamlessly with scalable simulation and

on-policy RL, and remains compatible with any USD method with intrinsic rewards. We open-source

the code for future research in this direction: https://leggedrobotics.github.io/d3-skill-discovery/.

Future directions include scaling to more complex behaviors such as loco-manipulation and climbing

boxes, which may require stronger exploration or curricula. Additionally, extending the framework

to different robots with varying morphologies and symmetries is another promising avenue.
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7 Limitations

Our results show that factorized, symmetry-aware USD can produce safe, deployable skills, but

several gaps remain.

Discovering More Complex Skills. While the framework handled rough-terrain locomotion, ex-

tending it to complex, interaction-rich tasks was considerably more challenging. For instance, when

adding a “box pose” factor to encourage loco-manipulation (Fig. 6a), the agent seldom learned the

multi-stage behavior of walking to the box before the interaction. The discovered pushing skills often

relied on unsafe, forceful collisions. Similarly, for obstacle-rich navigation without task-rewards

(Fig. 6b), the agent failed to acquire obstacle avoidance behaviors. These observations indicate that ad-

ditional guidance, such as task-aware curricula or alternative intrinsic objectives, is required to unlock

more complex loco-manipulation and locomotion skills. More details are provided in App. A.6.

(a) Flat terrain with a 0.5m cubic box weighing 10 kg. (b) Terrain with randomly placed static obstacles.

Figure 6: Environments for more complex skill discovery. (a) Adding a box pose factor encourages pushing,
but the agent relies on unsafe, forceful collisions rather than controlled manipulation. (b) In an obstacle-rich
environment, the agent explores but fails to discover safe avoidance behaviors without explicit rewards.

Cost of Symmetry in Skill Emergence. To enable the robot to learn pedipulation-like behaviors [36],

we added factors for the position of each foot of the robot. However, we observed that the symmetry-

mirroring suppressed the emergence of lifting of individual feet. Disabling symmetry produced a

lift for only one of the legs, but this behavior did not extend to the other legs of the robot. These

results suggest that fine-scale skills may benefit from softer symmetry biases or an explicit per-leg

curriculum for skill discovery.

User-defined Design Decisions. Our proposed method still requires user decisions about factorization,

algorithm selection, hyperparameters, and safety shaping. Automating these design choices and

adding hard safety guarantees would make the framework more plug-and-play, increasing its usability

across diverse robotic platforms and downstream tasks.
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A Appendix

A.1 Unsupervised Skill Discovery Algorithms

DIAYN: Diversity Is All You Need. DIAYN [4] aims to learn a skill-conditioned policy

πθ(a | s, z) by maximizing the mutual information (MI) between states and skills I(S;Z) ≜

DKL(p(s, z)∥p(s)p(z)) ≡ H(Z) − H(Z | S), where H(·) denotes the Shannon or differential

entropy. Intuitively, minimizing H(Z | S) means that the skill z should be easy to infer given the

state s. This is implemented by learning a discriminator qφ(s | z) that approximates the posterior

p(s | z). The policy and discriminator form a cooperative game: the discriminator predicts the skill

that led to the policy visiting certain states, while the policy seeks to visit states that make it easy for

the discriminator to identify the skill. The resulting reward is:

rDIAYN(s,a, z) = log qφ(z | s)− log p(z) (2)

Note, log p(z) only needs to be included in the reward term if p(z) is not uniform. The discriminator

is trained by maximizing the log-likelihood of the posterior E
z∼p(z),s∼πθ(z) log qφ(z | s). In practice,

the discriminator predicts parameters of a distribution over the skill space, which depends on the

selection of the prior p(z).

The authors of the original paper use a categorical distribution for the prior p(z). and noted that learn-

ing with continuous skill distributions such as uniform or Gaussian distribution degrades performance.

Table 4: Possible choices for skill distributions. De-
pending on the choice of the prior distribution for the
skills, we choose the posterior according to this table.

Prior p(z) Posterior q(z | s)

Uniform categorical Categorical
Uniform continuous Gaussian
Gaussian N (0, I) Gaussian
Uniform on sphere Von Mises-Fisher
Symmetric Dirichlet Dirichlet

Imagawa et al. [37] show that to learn more

skills, using a continuous distribution yields bet-

ter results than using a large number of discrete

skills. Depending on the selection of the skill

prior, the parameterization of the discriminator

needs adjustments. Importantly, the support of

the posterior has to contain the support of the

prior. In Tab. 4 we list different combinations of

priors and posteriors we tested. We found that

Dirichlet-distributed skills offer a good trade-

off between continuous skill expressiveness and

discriminability accuracy.

METRA: Metric-Aware Abstraction. METRA [5] (as well as LSD [19] and CSD [8]) aims to

learn a skill-conditioned policy by learning an encoder φ that maps states into a latent space of the

same dimensionality as the skill space. The skill discovery objective is to maximize the alignment of

latent transitions φ(s′)− φ(s) with the skill z under a constraint ∥φ(s)− φ(s′)∥2 ≤ d(s′, s), with

distance metric d(·, ·). LSD proposes to use the Euclidean distance between the states, d(s′, s) =
∥s′−s∥; CSD [20] proposes to use controllability-aware distance metric; while METRA [5] proposes

to use temporal distance, i.e., the minimum number of episodic steps to reach s′ from s, which in

their setup is simply d(s′, s) = 1.

The objective of the encoder in METRA is defined as, for all (s, s′) ∈ Sadj:

JMETRA(θ, φ) = E
z∼p(z),s∼πθ(z)

[

(φ(s′)− φ(s))⊤z
]

s.t.∥φ(s)− φ(s′)∥2 ≤ d(s′, s). (3)

In practice, this constrained obejctive is optimized via dual-gradient descent. It simplifies into a

reward function that rewards the agent if its actions result in state transitions that align with the skill

in the latent state space:

rMETRA(s, z, s
′) = (φ(s′)− φ(s))⊤z. (4)

However, this objective leads to skills that move maximally fast through the state space, which might

not be desirable. Instead, Atanassov et al. [8] propose a norm-matching objective to also control the
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execution speed of a skill, where for all (s, s′) ∈ Sadj:

JNM(θ, φ) = E
z∼p(z),s∼πθ(z)

[

∥(φ(s′)− φ(s)− z∥2
]

s.t.∥φ(s)− φ(s′)∥ ≤ d(s′, s). (5)

The resulting reward becomes a function of the error between the skill and the latent transition:

rMETRA,nm(s, z, s
′) = (1 + σ∥(φ(st+1)− φ(st))− z∥22)

−1 (6)

where σ ∈ R is a scaling factor.

In practice, we found that the norm-matching objective has a considerably weaker alignment compo-

nent, making it difficult to train from scratch, particularly when the initial alignment between latent

state transitions and skills is poor. The original alignment objective is often more stable in the early

stages of training. To combine the strengths of both objectives, we implement a curriculum that starts

with the original alignment objective and smoothly transitions to the norm-matching objective as

alignment performance improves, i.e., the final objective is a weighted sum:

JMETRA mix(θ, φ) = (1− αmix)JMETRA(θ, φ) + αmixJNM(θ, φ). (7)

The transition is controlled by the interpolation parameter αmix ∈ [0, 1], which is dynamically

calculated based on the cosine similarity between the latent state transition (φ(s′)− φ(s)) and the

skill z. Specifically, αmix linearly ramps from 0 to 1 as the cosine similarity score increases over a

predefined range. For our experiments, this objective switching range is set to [0.5, 0.7], as detailed

in Tab. 7. This means that when the cosine similarity is below 0.5, the agent is trained purely on

the alignment objective (αmix = 0), and when it exceeds 0.7, the training switches completely to the

norm-matching objective (αmix = 1). In between these values, the objectives are mixed linearly. The

weight αmix is used for both the agent’s reward calculation and the encoder’s loss function.

DUSDi: Disentangled Unsupervised Skill Discovery. To learn disentangled skills, Hu et al. [6]

propose learning two discriminators per factor, based on DIAYN. The first discriminator predicts the

skill factor from the respective state factor qi(zi | si), while the second discriminator predicts the

skill from every other state factor: q¬i(zi | s¬i), where s¬i ∈ S¬i = S1 × . . .Si−1 ×Si+1 × . . .SN .

This results in a reward function defined as:

rDUSDI(s,a, z) ≜

N
∑

i=1

qi(zi | si)− γq¬i(zi | s¬i), (8)

where γ < 1 is a hyperparameter that controls the importance of the entanglement penalty relative to

the skill-factor association (typically γ = 0.1). The first reward component is the standard DIAYN

reward, while the second one has the same formulation but is used as a penalty. The harder it is to

infer a skill factor given other state factors, the more disentangled the learned skills are.

A.2 Symmetry Augmentation

Symmetry augmentation can help boost sample efficiency and learn smoother behaviors. Mittal et al.

[25] propose to simply augment the collected data instead of introducing an extra symmetry objective,

or enforcing symmetry in the network architecture.

So far, symmetry biases have not been used as part of unsupervised skill discovery. However, it might

be useful to learn symmetric skills and boost exploration. To utilize symmetry augmentation, the MDP

needs to have symmetries, which requires the reward to be invariant to symmetry transformations.

In general, this is not the case in skill discovery. One way to enforce symmetry in the reward is

computing it as an average over all symmetries:

rsym(s,a, z) =
1

K

K
∑

i=1

r(M i
s(s),M

i
a(a),M

i
z(z)), (9)

where rsym is a reward that is guaranteed to be invariant over all symmetries. However, in practice,

we found that it suffices to train all networks on symmetry-augmented data.
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Skill Mirroring Function Properties. The function that mirrors skills, Mz , can be chosen freely

as long as it preserves: (i) the invariance of the skill prior and (ii) the group composition of the

underlying symmetries. The choice of a valid mirroring function Mz depends on the skill prior p(z).
For METRA, we use an isotropic prior, where all skills with the same norm ∥z∥2 have the same

probability, regardless of their direction. This means any mirroring function Mz is valid as long

as it is norm-preserving (e.g., a reflection or rotation). For DIAYN, we use a symmetric Dirichlet

distribution, Dir(z | α), where all entries of the concentration parameter α ∈ R
d
+ are equal. The

resulting probability distribution is invariant to any permutation of the entries of z. Therefore, for

DIAYN, any mirroring function Mz is valid as long as it only permutes the entries of the skill vector.

The set of mirroring functions must also respect the composition of the physical symmetries. For exam-

ple, mirroring a state left–right followed by front–back should yield the same physical transformation

as a 180◦ rotation about the z-axis. The same composition must hold in the skill space. Otherwise,

symmetry augmentation introduces contradictory training signals. Concretely, if M1
s

(

M2
s (si)

)

=

M3
s (si) ∀ si ∈ Si, but there exists a skill zi ∈ Zi s.t. M1

z

(

M2
z (zi)

)

̸= M3
z (zi), then symmetry

augmentation can produce tuples with the same state but different mirrored skills:
(

M3
s (si), . . . , M

1
z

(

M2
z (zi)

))

and
(

M3
s (si), . . . , M

3
z (zi)

)

.

Since states are now paired with ambiguous skills, any skill-conditioned reward or discriminator

cannot remain consistent, yielding irreconcilable gradients and hindering learning. Therefore, Mz

must satisfy M1
z ◦M

2
z = M3

z , to ensure coherent symmetry-augmented training.

The quadruped ANYmal-D is left-right and front-back symmetric, resulting in four symmetry

transformations: identity, left-right reflection, front-back reflection, and their composition, a 180◦

rotation about the z-axis.

Skill Mirroring Function Implementation. For DIAYN, we mirror skills such that subskills form

a Latin square. We use the following skill permutations:

M1
z (zi) = [z1

i ; z
2
i ; z

3
i ; z

4
i ]

M2
z (zi) = [z3

i ; z
4
i ; z

1
i ; z

2
i ]

M3
z (zi) = [z2

i ; z
1
i ; z

4
i ; z

3
i ]

M4
z (zi) = [z4

i ; z
3
i ; z

2
i ; z

1
i ]

Permuting sub-skills gives the latent space room for states that are invariant to certain symmetries.

Let Ssym(i,j) =
{

s ∈ S | M i
s(s) = M j

s (s)
}

be such states (e.g., forward/backward velocity is

invariant to a left–right flip). Whenever ∥Ssym(i,j)∥ > 1 is, we require matching skills Zsym(i,j) =
{

z ∈ Z | M i
z(z) = M j

z (z)
}

, which our permutation-based mirroring provides automatically:

Zsym(i,j) j = 1 j = 2 j = 3 j = 4
i = 1 Z [a; b; a; b] [a; a; b; b] [a; b; b; a]
i = 2 [a; b; a; b] Z [a; b; b; a] [a; a; b; b]
i = 3 [a; a; b; b] [a; b; b; a] Z [a; b; a; b]
i = 4 [b; a; a; b] [a; a; b; b] [a; b; a; b] Z

where a, b ∈ R
n denote subskills. This pattern guarantees that a state symmetric under i and j can

always be paired with a unique skill lying in Zsym(i,j).

If Ssym(i,j) = S, i.e., every state of a factor is invariant under a pair (i, j), then the skill map must

satisfy Zsym(i,j) = Z as well. For the heading-rate factor, a scalar that flips sign under left-right

or front-back reflections but is unchanged by their composition, both reflections are merged into

a single “flip”, resulting in the symmetries {1, 2} = (identity, flip). With two subskills we set

M1
z (zi) = [z1

i ; z
2
i ] and M2

z (zi) = [z2
i ; z

1
i ]. For states with no symmetries, e.g., the base height, we

omit symmetry augmentation for the skills completely.

For METRA, we treat the skill vector zi as a directional proxy for its associated state factor and

mirror it accordingly. This approach is grounded in the geometric nature of METRA’s alignment
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objective. Specifically, since the skill zi represents a direction, the mirroring function Mk
z applied

to the skill is defined to be the same geometric transformation as the function Mk
s applied to the

state. For instance, if a state factor like the robot’s base velocity is reflected across a plane for a

left-right symmetry transformation, its corresponding skill vector is also reflected across that same

plane. Applying identical symmetry transformations to both states and skills introduces a strong

inductive bias that aligns the learned skill behaviors with the physical symmetries of the robot. This

consistency is critical for the METRA objective, which directly rewards the alignment between the

skill vector and the change in the latent state representation.

In our experiments, we also found it crucial to limit the dimensionality of these directional skill

vectors to d ≤ 3. This is an empirical finding. When we experimented with higher-dimensional skill

vectors (d > 3), the policy consistently learned to ignore the additional, non-mirrored dimensions.

This behavior effectively caused the learned skill space to collapse back into a 3D geometric subspace,

and attempts to define more complex, higher-dimensional mirroring functions did not prevent this

instability. Therefore, constraining the skill dimensionality to match the 3D nature of the physical

transformations proved to be the most stable and effective approach.

A.3 Implementation Details

Policy Network. For the policy, we use a 3-layer MLP [512, 256, 128] with elu activations. The

action space is 12-dimensional, corresponding to the robot’s joint position targets. For each action

dimension, the policy predicts the mean and log std of a Gaussian distribution, of which we clamp

the standard deviation to the range [e−5, e2]. During training, actions are sampled from the predicted

distribution. During deployment, the action is the predicted mean.

Hyperparameters. We list hyperparameters for PPO in Tab. 5, for METRA in Tab. 7, and for

DIAYN in Tab. 8. The rewards for the style factor are listed in Tab. 9 and the regularization penalties

in Tab. 10. The policy observations can be found in Tab. 6.

Table 5: PPO Hyperparameters

Hyperparameter Value

PPO clip ratio 0.2
Value clip ratio 0.2
Num env steps before update 24
Num learning epochs 5
Num minibatches 4
Learning rate 1.0e-3
Discount factor 0.99
GAE lambda 0.95
KL target 0.01
Max grad norm 1.0

Table 6: Policy Observations

Name Dim

Base xy-position in world frame 2
Base linear velocity 3
Base angular velocity 3
Projected gravity 3
Previous action 12
Joint position 12
Joint velocity 12
Height scan (1.6m×1.0m) 231

Table 7: METRA Hyperparameters

Hyperparameter Value

Learning rate 1.0e-4
Initial Lagrange multiplier 30.0
Lagrange multiplier lr 1e-4
Lagrange multiplier slack 1e-5
Objective switching range (0.5, 0.7)
Network MLP: [256, 256]
Norm-matching σ 10.0

Table 8: DIAYN Hyperparameters

Hyperparameter Value

Skill distribution Dirichlet
Disentanglement λ 0.1
Network MLP: [256, 256]
Learning rate 1e-4
Dirichlet param range (0.05, 1.0)

Critic Decomposition. In DUSDi [6], the authors also propose decomposing the Q function as a

sum of Q values over individual factors. We do the same, but with value functions. Additionally,

instead of having one value function per factor, we may have an ensemble of value functions per factor
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Table 9: Style Factor Rewards

Name Objective Weight

Joint torques ∥τ∥22 -1.0e-3
Joint acceleration ∥q̈∥22 -1.0e-5
Action rate ∥at − at−1∥

2
2 -0.2

Action norm ∥a∥22 -0.4
Undesired Contacts

∑

b∈{Thighs, Shanks, Base} 1 [contact(b)] -30.0

Base height ∥pz − 0.55∥2 -10.0

Flat orientation ∥gb,xy∥
2
2

-10.0

Table 10: Regularization Rewards

Name Objective Weight

Joint torques ∥τ∥22 -1.0e-3
Joint acceleration ∥q̈∥22 -2.5e-7
Action rate ∥at − at−1∥

2
2 -0..05

Torque limits ∥max (τ − τmax, 0) ∥1 + ∥min (τ − τmin, 0) ∥1 -15.0
Torque ratio limits ∥max (τ − 0.75τmax, 0) ∥1 + ∥min (τ − 0.75τmin, 0) ∥1 -15.0
Joint vel limits ∥min (max (|q̇| − q̇lim, 0) , 1.0)∥1 -10.0

Joint pos limits

∥

∥

∥
max

(

q− q
upper,soft
lim , 0

)

+min
(

q− qlower,soft
lim , 0

)∥

∥

∥

1
-10.0

Upside down termination 1 [flipped termination] -5000

due to UCB exploration [14]. To do so, we need to store the individual factor rewards separately,

as the aggregated rewards are only required for the policy update. As a result, we do weighted

aggregation over the advantage estimates:

A = λN+1Astyle +

N
∑

i=1

λi(Ai,µ + λUCBAi,σ). (10)

where Astyle is the advantage of the style factor and Ai,µ, Ai,σ are the mean and standard deviation of

the advantage ensembles per factor. The policy is updated with aggregated advantage A.

Environments. The simulation environments are implemented in NVIDIA Isaac Lab [34]. Fig. 7a

shows the different types of terrain used in the experiments. The environment comprises flat, randomly

rough, and pyramidal sloped and stair terrains. The robot is placed at the center of these sub-terrains

and no external task-specific objectives are provided from the environment. The robot needs to learn

diverse skills through its intrinsic USD objectives.

Similarly to previous work [38], we randomize the physical properties of the robot (such as friction

and base mass) and introduce external pushes for robustness. An episode end if the robot base rotates

more than 100 deg or the duration of the episode reaches 30 s.

Inspired by Rudin et al. [38], we design a game-inspired terrain curriculum where the robot encounters

increasingly difficult sub-terrains as training progresses. Our curriculum is not driven by a task-

specific reward, but rather by a task-agnostic measure of skill capability: state coverage. Since

increasingly difficult terrain primarily challenges the agent’s ability to explore its position state space,

we use the coverage of this specific factor to control the curriculum’s progression. We quantify this

coverage by the total distance traversed, and adjust the terrain difficulty based on performance: if an

agent travels more than 10.0m, it advances to a more difficult level, whereas if it travels less than

5.0m, it is moved to an easier one.

The environments shown in Figs. 6a, 6b and 7b are used for additional experiments on discovering

loco-manipulation and high-level navigation skills. These are discussed in App. A.6.
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(a) Game-based curriculum terrain design. (b) Rough terrain environment with random walls.

Figure 7: Environments used for learning skills. These environments are generated procedurally using the
same mechanism as in Rudin et al. [38]. The policy receives the height-scan for perceiving the different terrains.

A.4 Evaluation Metrics

Metric Score. The metric score, a value in [−1, 1], quantifies the performance of each skill factor.

The definition of the score varies by the type of factor.

• For METRA factors, the score is the cosine similarity between the latent state transition

(φ(s′)−φ(s)) and the commanded skill z. This corresponds directly to the METRA reward

signal, rMETRA(s, z, s
′).

• For DIAYN factors, the score is the cosine similarity between the commanded skill z and

the expectation of the predicted posterior, E[qφ(z | s)]. Note: For a Dirichlet posterior, this

value is always positive, as its support is the probability simplex.

• For the style factor, we directly use the scaled extrinsic reward as the metric score.

Due to these different definitions, metric scores are not comparable across different factor types and

should only be compared for the same factor across different experimental runs.

Diversity. To quantify the diversity of learned behaviors, we measure the breadth of the state space

that the policy can reach. We calculate this metric as follows:

1. Sample a large number of skills, n > 10, 000, from the prior p(z).

2. For each skill, execute a full rollout with the policy to collect a trajectory of states.

3. Calculate the mean state for each of the n trajectories.

4. Calculate the standard deviation over these n mean states.

This final standard deviation serves as our diversity metric, where higher values indicate broader state

coverage.

A.5 Additional Results and Discussion

In this section, we provide additional details and insights for the experiments in the main paper.

Mixing USD Algorithms for Diverse Factor Types. The results in Tab. 2 highlight a key insight

beyond the performance trade-off mentioned in the main text: single-algorithm baselines tend to

over-specialize. We observe that when a method struggles with one type of factor (e.g., unbounded

position), its measured success on another (e.g., bounded heading) can be inflated. Our mixed

approach avoids this issue by leveraging each algorithm’s strengths. This principle also guides our

choice of skill dimensions, where we use a 2D skill for METRA to match the xy-plane’s geometry

and a 4D skill for DIAYN to represent discrete-like heading directions.
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Figure 8: Effect of factor weighting on conflicting fac-
tors. Weighting does not improve the metrics

Investigating Reward Weighting for Conflict-

ing Factors. We expected factor weighting to

alleviate the issue in factorized skill learning

when certain factors cannot be interacted with

simultaneously. To evaluate this, we factorized

the position factor further into four quadrants

(NE (x > 0, y > 0), SE (x > 0, y < 0), SW

(x < 0, y < 0), and NW (x < 0, y > 0)).

The robot cannot be in multiple quadrants si-

multaneously, which conflicts with the skills

commanded for each factor in each quadrant.

We trained all factors with METRA and without

symmetry augmentation. In Fig. 8 we visual-

ize the cosine similarity between the latent state

transition and the commanded skills, and the

scaled style reward for setups with and without weighting. Weighting does not change the per-

formance significantly. We hypothesize that factor weights did not help because while they affect

the policy’s reward, the underlying USD networks (discriminators/encoders) are still trained on all

collected data. This means data from trajectories where a factor’s weight was near zero is still used

to train that factor’s USD network, creating conflicting gradients. This suggests a valuable future

direction: incorporating the factor weights into the USD network loss, such that the collected rollouts

are weighted by their relevance to each factor during the network update.
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Figure 9: Effect of symmetry augmentation on skill
learning metrics.
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Figure 10: Effect of Dirichlet parameter on diversity
on three factors.

Symmetry Augmentation. In Fig. 9, we show how symmetry augmentation affects skill discovery

performance across different state factors. METRA is used for the position factor, while DIAYN

is used for the others. Notably, symmetry augmentation reduces the encoder accuracy in METRA,

while it has little effect on the discriminator accuracy in DIAYN. We hypothesize that this is because

METRA relies on a more direct, directional interpretation of the skill vector, making it more sensitive

to the constraints introduced by symmetry augmentation.

DIAYN Distribution Type. We evaluate the impact of different Dirichlet priors on skill diversity

for DIAYN-trained factors. We compare three setups: a fixed high-concentration prior (α = 0.05,

a fixed low-concentration prior (α = 1.0), and a curriculum that linearly increases α from 0.05 to

1.0 based on discriminator accuracy. As shown in Fig. 10, the curriculum setup results in greater

variability and often higher diversity scores for the base height and heading rate factors. This suggests

that starting with sparse skill sampling helps early specialization, while gradually broadening the

support encourages later diversity. In contrast, the Roll-Pitch factor appears less sensitive to the

choice of prior, likely due to its lower inherent diversity. Overall, the curriculum provides a trade-off

between diversity and training stability.
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A.6 Additional Tasks

Loco-manipulation. We attempted to learn loco-manipulation skills by placing a movable box in

the environment (shown in Fig. 6a) and adding the box pose as an additional state factor. However,

this setup alone failed to produce meaningful skills, as interactions with the box were rare and

the resulting intrinsic rewards from the box factor were weak. To address this, we incorporated

exploration guidance using RND [13] and UCB [14]. Neither method led to significant improvements.

With RND, the prediction error rapidly decreased before the agent could discover interactions with

the box, providing little incentive to explore it. With UCB, the agent received persistently high

intrinsic rewards due to high ensemble disagreement, caused by low-quality value estimates, without

corresponding learning progress, leading to unstructured and unproductive behavior.

Strouse et al. [12] showed that DIAYN suffers from poor exploration. To still encourage high

diversity, we can add an exploration bonus on top of the pure skill discovery reward. A simple form

of intrinsic motivation is random network distillation (RND) [13], which encourages exploration by

rewarding states that are rarely visited. Another method to encourage exploration is to use ensemble

disagreement as an exploration reward. One way to implement this, proposed by Strouse et al. [12],

is by defining multiple discriminators qφi
(z | s) and then rewarding the agent for high entropy of the

mixture compared to the mean entropy.

rDISDAIN = H

(

1

N

N
∑

i=0

qφi
(z | s)

)

−
1

N

N
∑

i=0

H (qφi
(z | s)) (11)

Depending on the distribution, this may not be easy to implement. A simpler approach based on

ensemble disagreement uses the variance of the rewards as an exploration bonus:

rEXPLORE = Var([log qφ1
(z | s), . . . , log qφN

(z | s)]) (12)

This is similar to the method proposed by Chen et al. [14], which used a Bayesian learning approach

by updating the policy based on an upper confidence bound (UCB) for the value estimate by defining

an ensemble of value functions and adding a disagreement bonus. However, this method also did not

help to discover meaningful loco-manipulation skills.

High-level Navigation. We investigated whether our framework could be applied hierarchically

to learn complex navigation behaviors without direct supervision. For this, we used one of our

pre-trained USD policies as a fixed, low-level controller that provides a library of basic skills. We

then trained a high-level policy on top, again using our USD objective, which learns to sequence these

skills by outputting skill vectors for the low-level policy. We evaluated this in environments with

randomly placed obstacles (shown in Figs. 6b and 7b), applying the METRA objective on the base

position factor to train the high-level policy. While the agent learned to cover the space, it struggled

to avoid obstacles, even with access to a 2D planar distance scan. We hypothesize that this is due to

the lack of an extrinsic signal that encourages obstacle avoidance.

We also explored using this setup to learn box-pushing behaviors. To simplify the task, the box could

be moved by simple collisions. Using METRA on the box position factor, the agent learned to push

the box effectively. However, since the low-level policy was not trained in the presence of the box, it

lacked any meaningful manipulation capabilities. As a result, the agent relied on forceful collisions

to move the box, an approach that is unsafe for real-world deployment.
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