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Abstract— Radiance field methods such as Neural Radiance
Fields (NeRFs) or 3D Gaussian Splatting (3DGS), have revo-
lutionized graphics and novel view synthesis. Their ability to
synthesize new viewpoints with photo-realistic quality, as well as
capture complex volumetric and specular scenes, makes them
an ideal visualization for robotic teleoperation setups. Direct
camera teleoperation provides high-fidelity operation at the
cost of maneuverability, while reconstruction-based approaches
offer controllable scenes with lower fidelity. With this in
mind, we propose replacing the traditional reconstruction-
visualization components of the robotic teleoperation pipeline
with online Radiance Fields, offering highly maneuverable
scenes with photorealistic quality. As such, there are three main
contributions to state of the art: (1) online training of Radiance
Fields using live data from multiple cameras, (2) support for
a variety of radiance methods including NeRF and 3DGS, (3)
visualization suite for these methods including a virtual reality
scene. To enable seamless integration with existing setups,
these components were tested with multiple robots in multiple
configurations and were displayed using traditional tools as well
as the VR headset. The results across methods and robots were
compared quantitatively to a baseline of mesh reconstruction,
and a user study was conducted to compare the different
visualization methods. More code and additional samples are
available at https://leggedrobotics.github.io/rffr.github.io/.

I. INTRODUCTION

Robotics is rapidly expanding its role in our every-
day activities, which needs fast, repetitive, and precise
actions. Robots are becoming highly autonomous, from
vacuum cleaners to everyday commute vehicles. However,
autonomous robots are still limited by perception, planning,
and control capabilities for different tasks. Here, they still
need human intervention to be successfully executed. The
process of controlling robots remotely is known as robotic
teleoperation. As robots become increasingly integrated into
complex environments, there is a growing need for teleop-
eration systems that offer high-fidelity reconstruction and
intuitive user interfaces. For the robots to be teleoperated
by humans, the system must create an immersive environ-
ment that can provide situational awareness to the operator.
Traditional teleoperation pipelines capture sensor data from
robots and display it to an operator. Direct camera streams
offer high fidelity at the cost of maneuverability, while recon-
structed environments are easy to control but often struggle
to accurately capture scene geometry and texture, especially
in volumetric or specular environments. The reconstruction
quality is often limited by high sensor noise and temporal
inconsistencies [1]. Moreover, the user interfaces may lack
immersion and intuitive interaction, limiting the operator’s
ability to perform tasks effectively. The proposed pipeline
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Fig. 1. Teleoperator controlling a robot using a VR interface from inside a
reconstructed Radiance Field. Reconstructions are created online from any
robot based on its sensor configuration. Neural Radiance Field or Gaussian
Splatting renders can be displayed in an immersive 360◦ render or on a
handheld viewer. These renders are displayed alongside the robot and its
sensor data, such as camera feeds and LiDAR.

addresses these challenges by leveraging advancements in
Radiance Fields and immersive visualization technologies to
bring high-fidelity, maneuverable scenes.

The foundation of Neural Radiance Fields (NeRF) [2] has
marked a significant leap in 3D reconstruction due to their
ability to render novel photorealistic views from a sparse
set of posed images. Recent advancements in NeRFs [3],
[4], [5] have significantly improved training and render-
ing time, making it an excellent candidate to improve the
visualization and immersiveness of teleoperation systems.
However, NeRFs still struggle with computational efficiency
and scene controllability [6], essential for teleoperation. In
response to these challenges, another technique known as
3D Gaussian Splatting (3DGS) [6] has emerged, offering
an efficient approach to rendering. Unlike NeRFs, 3DGS
utilizes an explicit Radiance Field representation, coupled
with highly parallelized processing, to achieve efficient com-
putation and rendering times. This is especially beneficial in
complex settings, where precise manipulation of geometries
and adaptation to lighting conditions are imperative.

With this in mind, this work aims to advance the state-of-
the-art in robotic teleoperation by presenting a novel dynamic
visualization pipeline that merges Radiance Fields with real-
time robots. First and foremost, our system can train high-
quality Radiance Fields from real-time robotic data in the
form of a Radiance Field Node. The system is dynamic
enough to handle data from any ROS-based robot, from a
simple robotic arm to a highly mobile quadruped. Secondly,
to keep up with the rapid advances in neural rendering, this
system includes deep integration with NerfStudio [7], allow-
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Fig. 2. General teleoperation visualization pipeline divided into three sections: Robots, Reconstruction Methods, Visualization. Sensor and pose data flows
from various robotic components (red) into the reconstruction method (green) to create a scene representation that is shown to the user in the visualizer
(blue). Support for Radiance Field reconstructions such as Neural Radiance Fields (NeRFs) and Gaussian Splatting, as well as RViz and VR visualizers for
these methods, are presented in this work. For baseline comparisons, a Voxblox mesh viewer was also ported to VR. These contributions are highlighted
with a purple dashed line.

ing for support for different methods, including Gaussian
Splatting. Finally, the system provides a suite of visualization
options allowing teleoperators to understand their environ-
ment through Radiance Fields. We offer an RViz-compatible
Radiance Field Plugin system that integrates seamlessly with
most existing ROS teleoperation systems, complete with
multiple render modes, scene cropping, and depth-informed
clipping. For more immersive use, a VR visualization suite
is designed, allowing the user to stand in a virtual replica
of the scene or send commands through a birds-eye-view
system. Ultimately, this research opens up new possibilities
for combining not just teleoperation with Radiance Fields
but the use of online Radiance Fields for robotics in general.

II. RELATED WORKS

This section provides a brief overview of teleoperation and
reconstruction methods, and recent work in Radiance Fields.

1) Teleoperation and Reconstruction: As robots are de-
ployed to more complex uses such as industrial settings [8]
or caves and other natural environments [9], there is an in-
creased need for teleoperation. Here sensor data is streamed
to an operator, either as direct camera feeds [10] or scene
reconstructions [11]. The state-of-the-art setups favor the
high fidelity of direct camera systems [10]. However, they
suffer from limited maneuverability due to fixed sensor feeds.
Meanwhile, reconstruction-based teleoperation builds a scene
representation that is easy to maneuver[11], [12], but often
suffers from low fidelity or poor performance [13]. Even
under the best circumstances, these systems fail to represent
volumetrics such as smoke and ignore view-dependent data
such as specular effects. Radiance Fields are explored as a
high-fidelity and maneuverable scene representation.

2) Radiance Fields: Originally used to render novel views
with photorealistic quality, Radiance Fields have recently
been adapted for large-scale 3D reconstructions. Neural
Radiance Fields (NeRFs) [2] could capture small scenes by
encoding geometry, color, and density into an MLP, allowing
for view-dependent colors and volumetric rendering. Rapid
advances allowed for high-frequency details [3], unrestricted

view construction [4], and even sped up operation to near
real-time on small scenes [5].

As a faster alternative to NeRFs, Gaussian Splatting
(3DGS) [6] leverages a more explicit scene representation for
real-time rendering. Representing the scene with 3D Gaus-
sians can capture view-dependent color, volumetric elements,
and unbounded scenes at higher speeds. However, it lacks the
scene fidelity of NeRF, particularly with complex reflections
with specular objects and sharp edges.

The recent explosion of novel NeRF methods has been
aided by the creation of NerfStudio [7]. NerfStudio provides
a comprehensive system for building, training, and adapt-
ing Radiance Field methods. It includes methods such as
Nerfacto (NeRF implementation) and Splatfacto (Gaussian
Splatting implementation), as well as a variant of Instant-
NGP, depth-supervised methods, and numerous others.

Until recently, the intersection of robotics and Radiance
Fields was limited due to long training times and the dif-
ficulty in porting the systems to mobile hardware. Instead,
Radiance Fields have mainly been used to perform local-
ization with offline data [14] or offline path planning [15].
Online integration of NeRFs is available in NerfBridge [16],
although lacks support for multiple cameras and newer
methods. This work addresses these issues by enabling online
multi-camera Radiance Field reconstruction, which easily
supports new methods such as 3DGS.

III. METHODOLOGY

The ideal teleoperation system would present the operator
with a high-fidelity, maneuverable, and faithful representa-
tion of the scene [17]. This system should be robot-agnostic
with minimal reconfiguration and be able to present environ-
mental data–sensor streams or reconstructions–to best suit
the task [1]. The extended 3D reconstruction-based pipeline,
shown in fig. 2, involves taking sensor data from the robot
over ROS and feeding it into a reconstruction method [11],
[7]. This method generates a representation of the environ-
ment relative to a fixed position which is presented to an
operator via the visualizer. By constructing the representation
relative to a fixed point, it can be displayed and aligned with



Fig. 3. Component diagram showing the connections between the robotic systems (red and orange), the reconstruction methods (green), and the visualizers
(blue). Data flows from the robotic systems into reconstruction method nodes where it is either merged into rendered views for Radiance Fields or a mesh
for Voxblox. The Radiance Field Node is comprised of a custom DataLoader, DataParser, and Dataset, and uses a collection of Sensor objects to manage
the ROS subscribers. The DataLoader and Dataset send data to any standard method during training, only returning images and cameras that have been
updated. This data is then displayed directly in RViz or transmitted over TCP to a VR headset.

additional data even as the robot moves through the space.
Overall, we can simplify this pipeline into three components:
the robot and its sensors, the reconstruction method, and the
visualization system.

Here, we present a system that builds off existing tele-
operation pipelines and extends the possible reconstruction
methods to include Radiance Fields and a means of visual-
izing them both on screen and with a VR headset. This is
highlighted in purple in fig. 2. The system was tested with
multiple robots, including a simple static configuration, a
mobile quadruped capable of exploring a larger environment,
and a quadruped with an attached arm. This robotic data is
sent to an existing mesh reconstruction as a baseline and a
novel ROS node for Radiance Fields that supports NeRFs
and 3DGS. These reconstruction methods are available in
multiple visualizers, ranging from the 2D RViz window on
the screen to 2.5D and 3D views in a VR headset shown
in fig. 7. Each component of this pipeline can be swapped
out or reconfigured depending on the deployment and task.

A. Robot

The purpose of the robot in this system is to capture the
environment to enable the user to understand the scene. The
primary forms of data used in this pipeline are poses from
ROS’ TF system, color images from onboard cameras, and
RGBD images containing depth data and color information.
To ensure the system is robot agnostic, these data sources can
be easily configured for any deployment. In fig. 2 and fig. 3,
the incoming data sources are shown on the left inside the
“Robot” box, with the red lines indicating image data, orange
showing the point cloud data, and yellow showing the poses
from the TF system.

The simplest robot setup would be a grounded robot, such
as a robotic arm attached to a table. This robot has limited
mobility, particularly when it comes to scanning a target
object or a large-scale scene. However, it offers incredibly
accurate poses, as the robot’s base frame is the fixed global

frame. This gives reconstructions high pose confidence at the
cost of scene scale and view angles.

A mobile robot is required to capture larger, more complex
scenes. In this setup, the robot can move in the environment
and capture virtually data from any angle. However, the rela-
tion between the robot and a fixed global frame is uncertain,
requiring the mobile robot to localize within the environment.
This can be accomplished with simultaneous localization
and mapping (SLAM) systems such as CompSLAM [9].
The poses can drift during locomotion due to reliance on
inaccurate onboard sensors. While the mobile base allows
for greater coverage, the poses may not always be reliable.

One method to help ensure we can capture larger scenes
with high pose accuracy and mobility is to affix a robotic
arm to the mobile platform. In this setup, the robot can move
around the scene to novel view angles and primarily collect
data from the arm’s motion while the base is static. As the
robot base is static, the end-effector motion can be measured
purely from the precise kinematic joint sensors. This avoids
visual or LiDAR localization errors.

B. Reconstruction Methods

Once data is captured by the robot, it is passed into a
reconstruction method. The purpose of this stage is to convert
the numerous data streams into a single stream that an
operator can use to control the robot. This involves creating a
representation that is accurate both in terms of geometry and
texture fidelity. This work compares two main approaches
to this problem: mesh reconstruction via Voxblox [11] and
Radiance Field reconstruction via NerfStudio [7]. These
two ROS nodes are shown as green in the “Reconstruction
Method” section of fig. 2 and fig. 3. The Voxblox node
generates an output mesh using incoming pose data and
point clouds, while the NerfStudio node generates rendered
Radiance Fields from poses and image data. As mesh re-
construction struggles to capture complex volumetric scenes,
and trades-off between fast reconstruction and high fidelity,
we propose using Radiance Fields for robotic teleoperation.



Radiance fields seek to use lightweight machine learning
algorithms in order to learn representations of a scene.

Radiance Field Node: To maintain interoperability with
new methods, the Radiance Field training node in the
pipeline can be set to use nearly any method supported by
NerfStudio [7]. The number of custom components in the
NerfStudio pipeline was minimized to ensure compatibility
with any method so long as it doesn’t require a custom
Dataset (such as semantic models) or a custom DataLoader.
This supported NerfStudio’s 3DGS method: Splatfacto, with
minimal overhead. At the start, this custom Dataset allocates
a buffer of preconfigured size to hold all images for training.
The node then subscribes to a set of topics for each camera
to capture its images (RGB or RGBD), intrinsics, and poses.
If all the cameras have depth topics, then a special buffer is
allocated to store the depth images, allowing for integration
with depth-supervised models. Each incoming image is fil-
tered to ensure it is not blurry and is a sufficiently different
pose based on the mean distance between TF frames. If the
cameras have different resolutions, all images are resized to
the largest camera and scaled back down when collated into
batches. For our experiments this meant storing image at
1440p with the 720p images being resized before training.
The associated per-camera intrinsics and extrinsics are stored
for each image based on the current pose data and the last
CameraInfo message. If the image is already rectified and
contains ”rect” in the topic name, the distortion parameters
of the associated camera are set to zero to avoid rectification.

To ensure compatibility with additional methods, this
package overrides the DataLoader with a custom ROS variant
which skips the caching and collating normally performed,
and instead uses the ROS Datasets functions to ensure only
updated images are pulled for training. There is also a special
evaluation DataLoader which can accept a list of image
sequence IDs to ensure the same images are used across
multiple runs. This is particularly helpful when running
comparisons across prerecorded ROS bag data. Additionally,
a custom DataParser is used to setup the ROS Dataset as
well as ROS subscribers which are managed through a helper
Sensor class. These Sensor objects manage the subscribers
for image and CameraInfo messages, and are responsible
for looking up the synchronized poses at each capture.
The use of this helper class allows multiple cameras to be
registered, each capturing data at a different rates. The Sensor
objects will then update only the appropriate data entries,
and forward the associated camera parameters to the rest
of the system. The flow of data is shown in fig. 3 with
all the custom components highlighted in purple and the
Sensor helper class in yellow. Once everything is set up,
the node captures several images to create the initial batch
before switching to online training mode.

Once the node is in online training mode, it continues
to receive new images up to the specified buffer size and
begins an ActionServer, which allows any ROS process to
request render data. A render request containing the view
pose is sent to the server, and a rendered image, along with
estimated scene depth is returned. These renders are then sent

to one of the visualizers for the teleoperator to interact with.
Additionally, the requests are associated with unique client
IDs, allowing multiple visualizers to request different renders
with a single Radiance Field node in the ROS network.

C. Visualization

The final stage of the pipeline is the visualizer. This
program is intended to present an accurate representation
of the world to the operator based on the data received from
the reconstruction method. This is shown in blue in fig. 2
and fig. 3 , with our custom Radiance Field RViz plugin
acting as the 2D visualization and the VR scenes as the 2.5D
and 3D visualizers. For a baseline comparison, the Voxblox
RViz plugin is used to show the mesh reconstruction.

Fig. 4. Sample of the RViz plugin occluding the robot based on scene
depth (left) and having the robot rendered on top (right).

1) RViz: RViz is the de facto visualization suite for ROS,
as it can visualize different sensor streams, such as point
clouds, robot models, and images. Also, it contains tools
to help users send commands directly through the system,
such as pose goals. It offers support for 3rd-party plugins,
allowing reconstruction methods such as Voxblox to imple-
ment custom viewers. This seamlessly integrates the new
environmental data with existing robotic and teleoperation
stacks.

Radiance Field Plugin: To integrate the online Radiance
Field generation with ROS, a Radiance Field RViz plugin is
presented. This plugin acts as a custom camera for the RViz
OpenGL scene, sending render requests to the Radiance Field
node whenever the camera is moved (dynamic mode) or a
stream of renders based around a moving frame (continuous
mode). Dynamic mode is best used when viewing the scene
from a static perspective, such as an overhead view for
navigation, or a close up for inspection. Continuous mode
on the other hand is helpful for a moving base frame, such
as third-person piloting, or when new incoming data needs
to be observed. In either mode the speeds of the renders
are often most dependant on resolution of the output image,
which can be adjusted with a setting in the View panel. In
order to provide rapid data for dynamic mode, the renders
are sent first at 10% of the final resolution, and then 50%
before sending over the full image. This allows the user to
move around the scene with more rapid response from the
rendered environment.

Depth data from RViz and the Radiance Field are then
used to either show the render realistically occluding the



Fig. 5. An axis-aligned bounding box can be used to crop the background
(left) or remove walls (right) allowing for novel views and clearer operation.

scene elements or as a cut-out, as shown in fig. 4. This is
achieved by transforming the real-world depth captured in the
rendering into OpenGL’s z-depth, a nonlinear scale ranging
from 0 to 1. This transformed depth can then be matched
with the z-depth used by RViz’s Ogre engine (also based
on OpenGL) for a specific camera perspective. As a result,
all objects within RViz–such as robots, sensor visualizations,
grids, and poses–are accurately occluded, providing a more
realistic visualization. This aims to give the operator a better
understanding of depth within the environment while also
making it easier to locate RViz components in the scene.
In large and indoor scenes, there is also a cut-out mode in
which the rendered image is always displayed behind the
RViz elements, making them easier to find.

Furthermore, as both 3DGS and NeRFs perform volu-
metric rendering, it can be difficult to self-localize due to
occlusion or unexplored noise. To combat this, the plugin
allows for the creation of an axis-aligned bounding box
which crops the scene by limiting the ray integration. This
is shown in fig. 5 where the bounding box is used to remove
the noisy background as well as the back wall that would
obstruct the operator’s view, visible in fig. 8. These two
renders are entirely novel views that the robot was unable
to capture either due to the wall or limitations on the arm’s
mobility.

Fig. 6. Teleoperator using VR system with Voxblox mesh on the table and
Radiance Field Viewer on the left (left) and live LiDAR data overlayed on
the mesh reconstruction.

2) VR: In testing, it was found that even with occlusion,
it was difficult for an operator to get a sense of depth while
looking at a 2D screen. To remedy this, the system was
ported to a Meta Quest 3 VR headset running with a Unity
scene to display the robotic data. This was following the
prior works [1], [17], [8] where VR was used to extend
the capabilities of existing teleoperation systems for greater

immersion and ease of use.
VR Robot Data: To create a baseline for comparison,

a handful of RViz features, such as a TF synchronized
robot model, pose publishing, and sensor visualizations (for
LiDAR, RGBD point clouds, and images) were integrated
into the VR headset as shown in fig. 6. The user is able
to send pose goals via the headset and hand interaction,
enabling them to send robot commands directly from the
VR interface. This system was extended with a mobile
GPU-based mesh generation for real-time streaming of the
Voxblox reconstruction. This provides the user with the same
sensor information they can access in RViz, but displayed in
an immersive 3D setting. In order to remain lightweight, the
VR scene is optimized to run natively on the headset, with
only a TCP connection to ROS handling message traffic. This
allows the headset to connect directly to the ROS network
of the robot and begin interaction with out the need for a
base station PC or any headset tethers.

Fig. 7. Radiance Field VR scene with 2.5D handheld parallax viewer (left)
and fully immersive 360◦ (right).

VR Radiance Fields: To use the Radiance Field renders,
there is a 2.5D handheld viewer, which provides the user a
view into the rendered world. This viewer uses the depth data
to create a parallax effect allowing the VR headset to provide
a greater sense of depth while looking at the renders. Similar
to the RViz camera, the viewer can request new renders
whenever the user moves the head and it is synchronized to
the position of the robot data in the scene. Requests to the
ActionServer are directly routed through the TCP connection,
and the rendered results are streamed straight to a GPU
shader for parallax rendering. For further immersion, there is
also a 360◦ spherical render which gives the user a sense of
scale as if they are physically present in the environment. The
viewer also offers controls such as image zoom, resolution,
and a live camera feed from the robot. Figure 7 shows the
handheld Radiance Field viewer during deployment and the
view from the spherical render mode. Similar to RViz plugin,
the depth data from the Radiance Fields is also used to
provide dynamic scene occlusion, allowing closer 3D objects,
such as robots or point clouds, to be rendered in front of the
Radiance Field renders.

IV. EXPERIMENTS

As there are three major components to this pipeline, three
sets of experiments were conducted. First, data was captured
on a static arm, mobile base, and mobile arm to ensure
robot-agnostic operation and compare reconstructions. Each
dataset was processed with Voxblox, NeRF, and 3DGS, and



photometric quality was evaluated. Second, to test online op-
erations, reconstruction and rendering times were measured.
Lastly, to validate the viewing experience, a user study was
conducted to compare the RViz mesh and NeRF renders vs
their VR counterparts.

A. Datasets

1) Static Arm: A static Franka Panda arm was used with
an Intel Realsense 435i RGBD camera. The arm was fixed to
a metal table and bounded by walls on two sides, reducing
the target scanning area to 20cm x 20cm. The third side
of this area was unexplorable as it is where the arm was
mounted, limiting the range of scans to front-facing and
only 90◦ of azimuth. Three targets were captured: a stuffed
donkey toy with fine fur, a fiducial cube, and a wooden
block. The fur was used to test the high-frequency details,
the fiducials checked texture accuracy, and the block was
used to confirm 3D geometric reconstruction.

2) Mobile Base: An Anybotics Anymal was used to walk
around a large lab environment. The scale of the scene was
roughly 15m x 10m and was captured with front and rear-
facing 1440p RGB cameras. Localization was performed us-
ing CompSLAM [9] and centered around a wooden pedestal
which the robot orbited. Atop the pedestal was a glass bowl,
testing each system’s transparent and specular reconstruction
abilities.

3) Mobile Arm: A DynaArm was attached to the Any-
botics Anymal with an additional Intel Realsense L515
mounted at the wrist. The target of capture was a yellow
switchboard cabinet with a metal bar across the middle
holding a box with a screen and switch. This was roughly
1m x 1m and captured from the front, with Anymal scanning
2m away with the arm, before moving in and capturing the
inside of the box. As the arm moved into the box, there was
a slight change in lighting condition, testing how well the
systems adapt to dynamic colors.

B. Quality

Ground Truth Voxblox NeRF 3DGS
Fig. 8. Comparisons of the static arm (left), mobile base (middle), and
mobile arm (right). The top row shows the ground truth images, the second
row shows the Voxblox reconstructions, the third row shows the NeRF
reconstruction and the bottom row shows the 3DGS reconstruction. NeRF
produced the highest quality results for both the mobile datasets, while
3DGS created a near-perfect image for the static arm dataset.

TABLE I
PHOTOMETRIC COMPARISONS OF DIFFERENT ROBOT CONFIGURATIONS

AND RECONSTRUCTION METHODS

Dataset Method PSNR ↑ SSIM ↑ LPIPS ↓

Static Arm
Voxblox 15.42 0.4969 0.5507
NeRF 18.07 0.5309 0.4917
3DGS 34.12 0.9288 0.2298

Mobile Base
Voxblox 6.85 0.4091 0.8051
NeRF 25.55 0.8718 0.1988
3DGS 20.18 0.7853 0.3953

Mobile Arm
Voxblox 16.94 0.514 0.5295
NeRF 22.16 0.6473 0.1478
3DGS 24.59 0.7414 0.2126

In order to ensure the platform is robot agnostic, three
different deployments were run. All three setups were trained
with the same parameters using Voxblox, Nerfacto, and
Splatfacto, with Nerfacto and Splatfacto being the default
NeRF and 3DGS methods from NerfStudio. Each was
evaluated based on their peak-signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM), and learned
perceptual image patch similarity (LPIPS) [18]. PSNR is
used to measure the artifacts in the scene, SSIM measures
the similarity for features such as lighting and contrast, and
LPIPS measures the network activation of patches, approxi-
mating what humans would say is similar. The ground truth
picture, baseline Voxblox reconstruction, NeRF, and 3DGS
are shown in fig. 8, while the photometric comparisons are
shown in table I. The best-resulting method for each dataset
is shown in bold.

1) Static Arm: As the Panda arm data had near-perfect
poses, it was able to produce results of very high texture
fidelity. High enough that in fig. 8, the fiducial cube’s
markers are clear enough to scan. The lack of mobility
produced limited views on the periphery of the scene,
resulting in lower-quality NeRF reconstructions. However,
the small scene size meant incredibly high-quality 3DGS
reconstructions. This is because the scene was well initial-
ized, with Gaussians densely covering the entire space with
little excess. Across all metrics–PSNR, SSIM, and LPIPS–
the 3DGS reconstruction performed twice as well as the
NeRF. While the captured areas are decently represented,
Voxblox created an incomplete mesh, scoring the lowest in
all metrics. These results are shown in table I.

2) Mobile Base: Radiance Fields, particularly NeRFs,
struggle with ray stability far from the scene center, resulting
in noise. Even Voxblox struggled to capture distant data,
producing a mostly incomplete reconstruction. During train-
ing, the NeRF method was able to smooth out the noise via
pose optimization, resulting in the best results. Additionally,
the target glass bowl was entirely missing from the Voxblox
reconstruction, while it was clearly captured in the NeRF
and roughly captured with 3DGS.

3) Mobile Arm: The switchboard cabinet produced the
highest quality results for LPIPS on the NeRF and 3DGS
reconstruction, representing the highest human-perceived



TABLE II
TIME COMPARISONS BETWEEN DIFFERENT METHODS

Method Per Iteration
Time [ms]

PSNR of
16.94 dB [s]

Render
Time [ms]

Render
Time [FPS]

Voxblox 1205.903 165.470 – –
NeRF 35.644 7.027 1020.131 0.980
3DGS 34.651 6.996 6.6257 151

quality. Voxblox managed to recreate most of the scene,
although failed to capture the support beam and part of the
door. Additionally, as the lighting changed when moving
inside the cabinet, the mesh was not uniformly colored. This
was captured in the Radiance Fields through their view-
dependent coloring. As shown in table I, 3DGS outperformed
NeRF on PSNR and SSIM, likely due to its better color
matching with spherical harmonics.

C. Performance

Online robotic teleoperation requires fast reconstruction
and visualization. To that end, each method’s reconstruction
and render times were compared on an RTX 4090. In order
to ensure repeatability across runs and comparisons, the data
was first recorded rosbags and the sequence ID for images
was stored to a file. This was then used to create the Datasets
during execution, ensuring the same images at the same
timestamps were used in each run. First, the per iteration time
was measured. For Voxblox, this is the time to integrate new
batches with the mesh, while for the Radiance Fields, this
was the training time for one iteration. Voxblox was run with
1cm voxels, and took 1.2 seconds to integrate each batch.
For NeRFs and 3DGS, the iteration time was 35.644ms and
34.651ms, respectively. Additionally, for a fair comparison,
the radiance methods were trained until they matched the
final Voxblox PSNR of 16.94dB. For NeRF, this took 7.027s
and 3DGS took 6.996s. Not only did the Radiance Field
methods produce higher quality results, but they achieved
this almost 20x faster. A summary of these results is shown
in table II.

0% 20% 40% 60% 80% 100%
Resolution

100

101

102

103

Ti
m

e 
(m

s)

NeRF and 3DGS Render Time

3DGS
NeRF

1000.0

100.0

10.0

1.0

FP
S

Fig. 9. Render times for NeRF and 3DGS for a 1024x1024 image at
different resolution percentages, showing an exponential increase in render
time for NeRFs with a nearly constant time for 3DGS. The data is displayed
at log scale due to the rapid increase in NeRF render times.

Second, the render time was considered. As Voxblox

displays a continually updating mesh, its render is lim-
ited to 30 frames per second by the viewer. For NeRF
and 3DGS, a full 1024x1024 image was rendered, taking
1020.13ms (0.98FPS) for NeRF and only 6.63ms (151FPS)
for 3DGS. When comparing the rendering times for different
resolutions, 3DGS remains fairly constant at around 6.23ms,
while NeRF renders take exponentially longer for larger
resolutions. This relation is shown in fig. 9. For use cases
requiring rapid rendering, explicit representations such as
mesh and 3DGS are preferred as they scale well for larger
resolutions and screens.

D. User Study

A user study was conducted with 20 participants to
compare the different visualization systems. The participants
were chosen from a group familiar with robotic systems
and who regularly use RViz. Their ages were between 22
and 32, with a mean age of 26, there were 5 female and
15 male participants, and only 5 had used VR systems
before. They evaluated the mobile arm dataset in fig. 8 and
compared the 2D RViz Voxblox and NeRF scene with VR
counterparts, with the results shown in fig. 10. This dataset
was chosen as it had the highest photometric scores, table I,
and therefore the highest quality. To avoid confusion, as both
the Radiance Fields, NeRF and 3DGS, are presented via the
same user interface, only one method was presented to the
users. NeRF was chosen for this comparison as it outscored
3DGS in LPIPS, which best approximates human-perceived
quality [18]. At the resolutions tested, the difference in render
time between NeRF and 3DGS was imperceptible.

Starting with perception, the NeRF was preferred to the
Voxblox reconstruction, with the VR NeRF scoring slightly
higher than the RViz variant. This confirms the results of
the photometric comparison in table I, that Radiance Fields
produce higher quality results than a mesh. Interestingly,
the VR systems consistently increased the perceived quality,
despite showing the same data as RViz. This is due to the
immersion of the VR system, with the added depth helping
geometric perception and the head-mounted optics helping
boost texture quality. Additionally, the optics of the VR
headset allow lower resolution images to be perceived as
larger and higher resolution, decreasing the render latency
for the system.

In terms of teleoperation tasks, the 3D mesh of Voxblox
VR and RViz was preferred for locomotion tasks as the
users could easily see where the robot was in relation to the
environment. However, for manipulation, RViz NeRF was
preferable to Voxblox, while the VR systems were roughly
the same. Perception and ability to read fine details are
paramount in these tasks, favoring the NeRF system, with
many VR users saying they would prefer a 3D NeRF for the
ideal setup. This can be addressed in the future by leveraging
3DGS’ explicit representation to directly show the Gaussians
in 3D without the need for the 2.5D viewer.

Finally, the VR systems were favored for usability over
their RViz counterparts, despite this being the first time
many users tried VR. The Voxblox systems were easier to
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Fig. 10. Results of the user study using the mobile arm dataset and four viewing modes: VR Voxblox( ), VR NeRF( ), RViz NeRF(
), RViz Voxblox( ). The means are shown with a black dotted line, while the medians are the yellow solid line. In all cases, the VR systems were
preferred to their 2D counterparts, while NeRFs were preferred for perception and manipulation and Voxblox for locomotion and usability.

maneuver and explore, as the direct 3D representation was
intuitive. The RViz NeRF overlay and handheld viewer took
time to get used to, but was the better platform for identifying
objects within the scene.

V. CONCLUSION

In conclusion, this paper presents significant advancements
in the field of robotic teleoperation through a comprehensive
Radiance Field visualization pipeline integrating multiple
cameras, dynamic support for new reconstruction methods,
and VR integration. The experiments conducted demonstrate
the effectiveness and versatility of the proposed system.

Firstly, demonstrating the system’s adaptability for differ-
ent robotic deployments, from static arms to mobile bases
with multiple cameras, in each setup, the Radiance Fields
produced higher quality reconstructions compared to the
mesh. Secondly, the greatly increased render speed of 3DGS
makes it comparable to mesh rendering for online use while
only requiring less time to hit the same quality. Lastly, the
user study comparing visualization systems underscores a
user preference for the quality of Radiance Fields over tra-
ditional meshes. For manipulation tasks, these renders were
even preferred to the traditional system. Across the board,
the VR systems provided a better experience, suggesting that
a VR version of explicitly 3D Radiance Fields, such as direct
3DGS in VR, would be the optimal teleoperation setup.

Overall, this work contributes to advancing state-of-the-art
robotic teleoperation by providing a robust pipeline adaptable
to different deployments, offering high-fidelity reconstruction
capabilities, and leveraging immersive VR environments for
enhanced user experience. The findings suggest promising
avenues for future research in the intersection of robotics
and Radiance Fields technologies.
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