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Legged robots that can operate autonomously in remote and hazardous environments will greatly increase op-

portunities for exploration into under-explored areas. Exteroceptive perception is crucial for fast and energy-

efficient locomotion: perceiving the terrain before making contact with it enables planning and adaptation of

the gait ahead of time to maintain speed and stability. However, utilizing exteroceptive perception robustly for

locomotion has remained a grand challenge in robotics. Snow, vegetation, and water visually appear as obstacles

on which the robot cannot step – or are missing altogether due to high reflectance. Additionally, depth perception

can degrade due to difficult lighting, dust, fog, reflective or transparent surfaces, sensor occlusion, and more. For

this reason, the most robust and general solutions to legged locomotion to date rely solely on proprioception. This

severely limits locomotion speed, because the robot has to physically feel out the terrain before adapting its gait

accordingly. Here we present a robust and general solution to integrating exteroceptive and proprioceptive per-

ception for legged locomotion. We leverage an attention-based recurrent encoder that integrates proprioceptive

and exteroceptive input. The encoder is trained end-to-end and learns to seamlessly combine the different percep-

tion modalities without resorting to heuristics. The result is a legged locomotion controller with high robustness

and speed. The controller was tested in a variety of challenging natural and urban environments over multiple

seasons and completed an hour-long hike in the Alps in the time recommended for human hikers.

1. INTRODUCTION

Legged robots can carry out missions in challenging environments that

are too far or too dangerous for humans, such as hazardous areas and

the surfaces of other planets. Legs can walk over challenging terrain

with steep slopes, steps, and gaps that may impede wheeled or tracked

vehicles of similar size. There has been notable progress in legged

robotics [1–5] and several commercial platforms are being deployed in

the real world [6–10].

However, until now, legged robots could not match the performance

of animals in traversing challenging real-world terrain. Many legged

animals such as humans and dogs can briskly walk or run in such

environments by foreseeing the upcoming terrain and planning their

footsteps based on visual information [11]. Animals naturally combine

proprioception and exteroception to adapt to highly irregular terrain

shape and surface properties such as slipperiness or softness, even

when visual perception is limited. Endowing legged robots with this

ability is a grand challenge in robotics.

One of the biggest difficulties lies in reliable interpretation of in-

complete and noisy perception for control. Exteroceptive information

provided by onboard sensors is incomplete and often unreliable in real-

world environments. Stereo camera based depth sensors, which most

existing legged robots rely on [6, 9, 12], require texture to perform

stereo matching and consequently struggle with low-texture surfaces

or when parts of the image are under or overexposed. Time of Flight

(ToF) cameras often fail to perceive dark surfaces and become noisy

under sunlight [13]. Generally, sensors which rely on light to infer

distance are prone to producing artifacts on highly reflective surfaces,

since the sensors assume that light travels in a straight path. In addition,

depth sensors by nature cannot distinguish soft unstable surfaces such

as vegetation from rigid ones. An elevation map is commonly used to

represent geometric terrain information extracted from depth sensor

measurements [14–17]. It relies on the robot’s estimated pose and is

therefore affected by errors in this estimate. Other common sources of

uncertainty in the map are occlusion or temporal inconsistency of the

measurements due to dynamic objects. Most existing methods that rely

on onboard terrain perception are still vulnerable to these failures.

Conventional approaches assume that the terrain information and

any uncertainties encoded in the map are reasonably accurate, and the

focus shifts solely to generating the motion. Offline methods use a pre-

scanned terrain map, compute a handcrafted cost function over the map,

and optimize a trajectory which is replayed on the robot [18, 19]. They

assume perfect knowledge of the full terrain and robot states and plan

complex motions with long planning times. Online methods generally

employ a similar approach but use only onboard resources to construct

a map and continuously replan trajectories during execution [20–24].
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Fig. 1. Robust locomotion in the wild. The presented locomotion controller was extensively tested in a variety of complex environments over

multiple seasons. The controller overcame a whole spectrum of real-world challenges, often encountering them in combination. These include

slippery surfaces, steep inclinations, complex terrain, and vegetation in natural environments. In search-and-rescue scenarios, the controller

dealt with steep stairs, unknown payloads, and perception-degrading fog. Reflective surfaces, loose ground, low light, and water puddles were

encountered in underground cave systems. Soft and slippery snow piled up in the winter. The controller traversed these environments with zero

failures.
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Recently, faster locomotion has been achieved by reducing the planning

time with heuristics [25–27] or using Convolutional Neural Networks

(CNN) to calculate foothold cost more efficiently [27]. Recently, a

bipedal robot Atlas demonstrated parkour over complex obstacles [28].

It leverages pre-planned motion reference and optimizes its motion

online by utilizing onboard LiDAR sensor data. Overall, the focus of all

the approaches mentioned above is on picking footholds and generating

trajectories given accurate terrain information. Some works [14, 17]

represent the statistical uncertainty of the measurements in the map, but

its use is limited to heuristically defined foot placement rules to avoid

risky areas [24]. Such methods can only handle explicitly modeled

uncertainties and are not robust to the variety of perception failures

encountered in the wild.

Data-driven methods have recently been introduced in order to

incorporate more complex dynamics without compromising real-time

performance. Learning-based quadrupedal or bipedal locomotion for

simulated characters has been achieved by using reinforcement learning

(RL) [29–32] and realistic robot models were used in recent works [33].

However, these works were only conducted in simulation. Recently,

RL based locomotion controllers have been successfully transferred

to physical robots [3, 4, 34–40]. Hwangbo et al. [3, 41] realized

quadrupedal locomotion and recovery on flat ground with a physical

robot by using learned actuator dynamics to facilitate simulation-to-

reality (sim-to-real) transfer. Lee et al. [4] extended this approach and

enabled rough-terrain locomotion by simulating challenging terrain in

a privileged training setup with an adaptive curriculum. Peng et al. [35]

used imitation learning to transfer animal motion to a legged robot.

However, these methods do not use any visual information.

In order to add exteroceptive information to locomotion learning,

Gangapurwala et al. [42] combined a learning-based foothold planner

and a model-based whole-body motion controller to transfer policies to

the real world in a laboratory setting. Their applications are limited to

rigid terrain with mostly flat surfaces and are still constrained in their

deployment range. Their performance is tightly bound to the quality of

the map, which often becomes unreliable in the field.

In both model-based and learning-based approaches, the assump-

tion of flawless map quality precludes the application of these methods

in uncontrolled outdoor environments. Handling uncertainties in ter-

rain perception remains an open problem. Existing controllers avoid

catastrophic failures by simply refraining from using visual information

in outdoor environments [2, 4, 38] or by adding heuristically defined

reflex rules [43, 44].

Here we present a terrain-aware locomotion controller for

quadrupedal robots that overcomes limitations of previous approaches

and enables robust traversal of harsh natural terrain at unprecedented

speeds (Movie 1). At its core, the controller is based on a principled

solution to incorporating exteroceptive perception into locomotion

control.

The key component is a recurrent encoder that combines proprio-

ception and exteroception into an integrated belief state. The encoder is

trained in simulation to capture ground-truth information about the ter-

rain given exteroceptive observations that may be incomplete, biased,

and noisy. The belief state encoder is trained end-to-end to integrate

proprioceptive and exteroceptive data without resorting to heuristics. It

learns to take advantage of the foresight afforded by exteroception to

plan footholds and accelerate locomotion when exteroception is reli-

able, and can seamlessly fall back to robust proprioceptive locomotion

when needed. The learned controller thus combines the best of both

worlds: the speed and efficiency afforded by exteroception and the

robustness of proprioception.

The controller is trained via privileged learning [45]. We first train

a teacher policy via Reinforcement Learning (RL) with full access

to privileged information in the form of the ground-truth state of the

environment. This privileged training enables the teacher policy to

discover the optimal behavior given perfect knowledge of the terrain.

We then train a student policy that only has access to information that

is available in the field on the physical robot. The student policy is

built around our belief state encoder and trained via imitation learning.

The student policy learns to predict the teacher’s optimal action given

only partial and noisy observations of the environment.

Once the student policy is trained, we deploy it on the robot without

any fine-tuning. The controller gets onboard sensor observations and a

desired velocity command, and outputs each joint’s target position as

the action. The robot perceives the environment by leveraging a robot-

centric elevation map. The elevation map serves as an abstraction layer

between sensors and the locomotion controller, making our method

independent of depth sensor choices. It works with no fine-tuning with

different sensors, such as stereo cameras or LiDAR. Since the policy

was trained to handle significant noise, bias, and gaps in the elevation

map, the robot can continue walking even when mapping fails or the

sensors are physically broken.

The presented approach achieves substantial improvements over

the state of the art [4] in locomotion speed and obstacle traversability

while maintaining exceptional robustness. Our key contribution is a

method for combining multi-modal perception and demonstrating with

extensive hardware experiments that the resulting control policy is

robust against various exteroceptive failures. Handling exteroception

failures has been a challenging problem in robotics. Our approach

constitutes a general framework for robust deployment of complex

autonomous machines in the wild.

2. RESULTS

Fast and robust locomotion in the wild

We deployed our controller in a wide variety of terrain, as shown

in Figure 1 and Movie 1. This includes alpine, forest, underground,

and urban environments. The controller was consistently robust and

had zero falls during all deployments. Because of the exteroceptive

perception, the robot could anticipate the terrain and adapt its motion

to achieve fast and smooth walking. This was particularly notable

for structures that require high foot clearance, such as stairs and large

obstacles. The robot was able to leverage exteroceptive input to conquer

terrain that was beyond the capabilities of prior work that did not utilize

exteroception [4].

ANYmal successfully traversed challenging natural environments

with steep inclination, slippery surfaces, grass, and snow (Figure 1 A-J).

The robot was robust in these conditions, even when occlusion and

surface properties such as high reflectance impeded exteroception. Our

controller was also robustly deployed in underground environments

with loose gravel, sand, dust, water, and limited illumination (Figure 1

K-N).

Urban environments also present important challenges (Figure 1

O-R). For traversing stairs, the state-of-the-art quadrupedal robot Spot

from Boston Dynamics requires that a dedicated mode is engaged, and

the robot must be properly oriented with respect to the stairs [p. 33 44].

In contrast, our controller does not require any special mode for stairs,

and can traverse stairs natively in any direction and any orientation,

such as sideways, diagonally, and turning around on the stairway. See

Movie S1 for demonstrations of smooth and robust stair traversal in

arbitrary direction with our controller.

The controller was also robust to combinations of different chal-

lenges, as can be seen with snow on stairs in Figure 1R. Snow makes

stairs slippery and yields incomplete and erroneous exteroceptive data.

Depth sensors either fail due to the high reflectivity of snow, or esti-

mate the surface profile to be on top of the snow, whereas the robot’s

legs sink below this level. Foot slippage in snow can also cause large
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Fig. 2. A hike on the Etzel mountain in Switzerland, completed by ANYmal with our locomotion controller. The 2.2km route – with 120m of

elevation gain and inclinations up to 38% – encompasses a variety of challenging terrain. ANYmal reached the summit faster than the human

time indicated in the official signage, and finished the entire route in virtually the same time as given by a hiking guide [46].
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drift in the kinematic pose estimation [47], making the map even more

inconsistent. Nevertheless, the controller remained consistently robust,

with zero failures in this regime as well.

A hike in the Alps

To further evaluate the robustness of our controller, we conducted

a hiking experiment in which we tested if ANYmal could complete

an hour-long hiking loop on the Etzel mountain in Switzerland. The

hiking route was 2.2 km long, with an elevation gain of 120 m. Com-

pleting the trail required traversing steep inclinations, high steps, rocky

surfaces, slippery ground, and tree roots (Figure 2). As seen in Movie

2, ANYmal completed the entire hike without any failure, stopping

only to fix a detached shoe and swap batteries. The robot was able

to reach the summit in 31 minutes, which is faster than the expected

human hiking duration indicated in the official signage (35 minutes

as shown in Figure 2), and finished the entire path in 78 minutes –

virtually the same duration suggested by a hiking planner (76 minutes),

which rates the hike “difficult” [46]. The difficulty levels are chosen

from “easy”, “moderate”, and “difficult”, calculated by combining the

required fitness level, sport type, and the technical complexity [48].

During the hike, the controller faced various challenges. The as-

cending path reached inclinations of up to 38% with rocky and wet

surfaces (Figure 2 (B-C)). On the descent through a forest, tree roots

formed intricate obstacles and the ground proved very slippery (Figure

2 (G-H)).

Vegetation above the robot sometimes introduced severe artifacts

into the estimated elevation map. Despite all the challenges, the robot

finished the hike without any human help and without a single fall.

Exteroceptive challenges

In this section, we examine how the terrain was perceived by the

robot in conditions that are challenging for exteroception. The robot

perceives the environment in the form of height samples from an

elevation map constructed from point cloud input, as seen in Figure 3A.

We used LiDAR in some experiments (Figure 3D-G) and active stereo

cameras in others (Figure 3B,C) to test the robustness of the controller

to the sensing modality.

We encountered many circumstances in which exteroception pro-

vides incomplete or misleading input. As shown in Figure 3 B-G, the

estimated elevation map can unreliable due to sensing failures, limita-

tions of the 2.5D height map representation, or viewpoint restrictions

due to onboard sensing.

Since most depth sensors rely on light to infer distance, either

through time-of-flight measurements or stereo disparity, they com-

monly struggle with reflective or translucent surfaces.Figure 3B shows

such a sensing failure, where the reflective metal floor induced large

depth outliers which appear as a trench in the elevation map. Figure

3C shows a sensing failure in the presence of snow. Since snow is

highly reflective and has very little texture, stereo cameras could not

infer depth, which lead to an empty map.

The 2.5D elevation map representation cannot accurately represent

overhanging objects such as tree branches or low ceilings [17]. These

were integrated into the height field and were misrepresented as tall

obstacles (Figure 3D). In addition, because the map cannot distinguish

between rigid or soft materials, the map gave misleading information

in soft vegetation or deep snow (Figure 3E).

Slippery or deformable surfaces caused odometry drift because

they violate the assumption of stable footholds, commonly adopted by

kinematic pose estimators [47]. Since map construction relies on such

pose estimation to register consecutive input point clouds, the map

became inaccurate in such circumstances (Figure 3F). Furthermore,

since the sensors were only located on the robot itself, areas behind

structures were occluded and not presented in the map, which was

especially problematic during uphill walking (Figure 3G).

Overall, our controller could handle all of these challenging condi-

tions gracefully, without a single failure. The belief state estimator was

trained to assess the reliability of exteroceptive information and made

use of it to the extent possible. When exteroceptive information was

incomplete, noisy, or misleading, the controller could always grace-

fully degrade to proprioceptive locomotion, which was shown to be

robust [4]. The controller thus aims to achieve the best of both worlds:

achieving fast predictive locomotion when exteroceptive information is

informative, but seamlessly retaining the robustness of proprioceptive

control when it is not.

Evaluating the contribution of exteroception

We conducted controlled experiments to quantitatively evaluate the

contribution of exteroception. We compared our controller to a propri-

oceptive baseline [4] that does not use exteroception.

First, we compared the success rate of overcoming fixed-height

steps as shown in Figure 4A. Wooden steps of various height (from 12

cm to 36.5 cm) were placed ahead of the robot, which performed 10

trials to overcome each step with a fixed velocity command. A trial

was considered successful if the robot overcomes the step within 5

seconds.

The success rate of the proprioceptive baseline dropped at 20 cm

step height when the front legs started frequently getting stuck at the

step (Figure 4B). Even when the front legs successfully overcame

the step, the hind legs often failed to fully step up. In contrast, our

controller reliably traversed steps of up to 30.5 cm in height. Since

our controller could anticipate the step, it lifted its legs higher without

making physical contact first, and leaned its body forward to let the hind

leg swing over the step (Figure 4A). Until this height, the dominating

failure reason was the robot evading the step sideways instead of falling.

When approaching steps higher than 32 cm, our controller hesitated

to walk forward because it learned that steps of such height are at or

above the robot’s physical limits and are likely to incur a high cost.

We also tested the two controllers in an obstacle course, as shown

in Figure 4C,D. In this experiment, the robot was given a fixed path

over the obstacles and tracked it using a pure pursuit controller [49].

The path traverses several types of obstacles – an inclined platform, a

raised platform, stairs, and a pile of blocks. The platforms are 20 cm

high, the stairs are 17 cm high and 29 cm deep each, and the blocks

are each 20 cm in both height and depth. Our controller followed the

given path smoothly without any assistance, as shown in Figure 4C.

The exteroceptive perception provided advance information on the

upcoming obstacles, allowing the controller to adjust the robot’s motion

before it made contact with the obstacles, facilitating fast and smooth

motion through the obstacle course. The baseline, on the other hand,

failed to track the path without human assistance. During execution, it

got stuck on all three obstacles and we had to lift and push the robot to

continue the experiment (Figure 4D).

In addition, we measured the maximum locomotion speed of both

controllers over flat ground and in the presence of obstacles. Figure

4E shows the experimental setup. We gave the controller a constant

forward, lateral, or turning command and recorded the velocity on

flat ground and over a 20 cm step. Note that the baseline controller

only receives a directional command and learns to walk as fast as

possible in the commanded direction [4]. Our controller walked at 1.2

m/s, while the baseline could only achieve 0.6 m/s on flat ground in

both the forward and lateral directions. The difference became even

more pronounced over the obstacle. Our controller could traverse

the obstacle without any notable slow-down, while the baseline was

stymied. The turning velocity showed the biggest difference between
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B Reflective ground

D Overhanging objects

E Non rigid obstacles

F Pose estimation driftC Deep snow 

G Occlusion

A

Fig. 3. Our locomotion controller perceives the environment through height samples (red dots) from an elevation map (A). The controller is ro-

bust to many perception challenges commonly encountered in the field: missing map information due to sensing failure (B, C, G) and misleading

map information due to non-rigid terrain (D, E) and pose estimation drift (F).
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the baseline policy and ours. Our controller could turn at 3 rad/s while

the baseline policy could only turn at 0.6 rad/s: a five-fold difference.

These results show clear gains by our controller over the propri-

oceptive baseline. Exteroception enabled our controller to traverse

challenging environments more successfully and at higher speeds in

comparison to pure proprioception. Further quantitative performance

evaluation is provided in the supplementary section S2.

Evaluating robustness with belief state visualization

To examine how our controller integrates proprioception and extero-

ception, we conducted a number of controlled experiments. We tested

with two types of obstacles that provide ambiguous or misleading exte-

roceptive input: an opaque foam obstacle that appears solid but cannot

support a foothold, and a solid but transparent obstacle. We placed

each obstacle ahead of the robot and commanded the robot to walk

forward at a constant velocity.

The sensors perceived the foam block as solid and the robot conse-

quently prepared to step on it but could not achieve a stable foothold

due to the deformation of the foam. Figure 5A shows how the internal

belief state (blue) was revised as the robot encounters the misleading

obstacle: the controller initially trusted the exteroceptive input (red)

but quickly revised its estimate of terrain height upon contact. Once

the correct belief had been formed, it was retained even after the foot

left the ground, showing that the controller retains past information

due to its recurrent structure.

The transparent obstacle is a block made of clear, acrylic plates,

which are not accurately perceived by the onboard sensors (Figure 5B).

The robot therefore walked as if it were on flat ground until it made

contact with the step, at which point it revised its estimate of terrain

profile upwards and changed its gait accordingly.

In the next experiment we simulated complete exteroception failure

by physically covering the sensors, thus making them fully uninfor-

mative (Figure 5C,D). The robot was commanded to walk up and

down two steps of stairs. With an unobstructed sensor, the controller

traversed the stairs gracefully, without any unintended contact with

the stair risers, adjusting its footholds and body posture to step down

the stairs softly. When the sensors were covered, the map had no

information and the controller received random noise as input. In

this condition, the robot made contact with the riser of the first stair,

which could not be perceived in advance, revised its estimate of the

terrain profile, adjusted its gait accordingly, and successfully climbed

the stairs. On the way down, the blinded robot made a hard landing

with its front feet but kept its balance and stepped down softly with its

hind legs.

Lastly, we tested locomotion over an elevated slippery surface (Fig-

ure 5E). After the robot stepped onto the slippery platform, it detected

the low friction and adapted its behavior to step faster and keep its

balance. The momentarily sliding feet violated the assumption of the

kinematic pose estimator, which in turn destabilized the estimated ele-

vation map and rendered exteroception uninformative during this time.

The controller seamlessly fell back on proprioception until the esti-

mated elevation map stabilized and exteroception became informative

again.

3. DISCUSSION

We have presented a fast and robust quadrupedal locomotion controller

for challenging terrain. The controller seamlessly integrates extero-

ceptive and proprioceptive input. Exteroceptive perception enables

the robot to traverse the environment quickly and gracefully by antic-

ipating the terrain and adapting its gait accordingly before contact is

made. When exteroceptive perception is misleading, incomplete, or

missing altogether, the controller smoothly transitions to proprioceptive

locomotion. The controller remains robust in all conditions, including

when the robot is effectively blind. The integration of exteroceptive

and proprioceptive inputs is learned end-to-end and does not require

any hand-coded rules or heuristics. The result is the first rough-terrain

legged locomotion controller that combines the speed and grace of

vision-based locomotion with the high robustness of proprioception.

This combination of speed and high robustness has been validated

through controlled experiments and extensive deployments in the

wild, including an hour-long hiking route in the Alps that is rated

“difficult"[46]. The entire route was completed by the robot without

human assistance (other than reattaching a detached shoe and swapping

the batteries), in the recommended time for completion of this route by

human hikers.

Our work expands the operational domain of legged robots and

opens up new frontiers in autonomous navigation. Navigation plan-

ners no longer need to identify ground type or to switch modes dur-

ing autonomous operation. Our controller was used as the default

controller in the DARPA Subterranean Challenge missions of team

Cerberus [50, 51] which has won the first prize in the finals [52]. In

this challenge, our controller drove ANYmals to operate autonomously

over extended periods of time in underground environments with rough

terrain, obstructions, and degraded sensing in the presence of dust,

fog, water, and smoke [53]. Our controller played a crucial role as it

enabled four ANYmals to explore over 1700m in all three types of

courses – tunnel, urban, and cave – without a single fall.

Possible extensions

Future work could explicitly utilize the uncertainty information in the

belief state. Currently, the policy uses uncertainty only implicitly to

estimate the terrain. For example, in front of narrow cliff or a stepping

stone, the elevation map does not provide sufficient information due

to occlusion. Therefore, the policy assumes a continuous surface and,

as a result, the robot might step off and fall. Explicitly estimating

uncertainty may allow the policy to become more careful when exte-

roceptive input is unreliable, for example using its foot to probe the

ground if it is unsure about it. In addition, our current implementation

obtains perceptual information through an intermediate state in the

form of an elevation map, rather than directly ingesting raw sensor data.

This has the advantage that the model is independent of the specific

exteroceptive sensors. (We use LiDAR and stereo cameras in different

deployments, with no retraining or fine-tuning.) However, the elevation

map representation omits detail that may be present in the raw sensory

input and may provide additional information concerning material and

texture. Furthermore, our elevation map construction relies on a classi-

cal pose estimation module that is not trained jointly with the rest of

the system. Appropriately folding the processing of raw sensory input

into the network may further enhance the speed and robustness of the

controller. In addition, an occlusion model could be learned, such that

the policy understands that there’s an occlusion behind the cliff and

avoids stepping off it. Another limitation is the inability to complete

locomotion tasks which would require maneuvers very different from

normal walking, for example recovering from a leg stuck in narrow

holes or climbing onto high ledges.

4. MATERIALS AND METHODS

Overview

We train a neural network policy in simulation and then perform zero-

shot sim-to-real transfer. Our method consists of three stages, illus-

trated in Figure 6.

First, a teacher policy is trained with RL to follow a random target

velocity over randomly generated terrain with random disturbances.
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Fig. 4. Internal belief state inspection during perceptive failure using a learned belief decoder. Red dots indicate height samples given as input

to the policy. Blue dots show the controller’s internal estimate of the terrain profile. (A) After stepping on a soft obstacle that cannot support a

foothold, the policy correctly revises its estimate of the terrain profile downwards. (B) A transparent obstacle is correctly incorporated into the

terrain profile after contact is made. (C) With operational sensors, the robot swiftly and gracefully climbs the stairs, with no spurious contacts.

(D) When the robot is blinded by covering the sensors, the policy can no longer anticipate the terrain but remains robust and successfully tra-

verses the stairs. (E) When stepping onto a slippery platform, the policy identifies low friction and compensates for the induced pose estimation

drift. The graph shows a decoded friction coefficient.
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Fig. 5. Overview of the training methods and deployment. We first train a teacher policy with access to privileged simulation data using re-

inforcement learning (RL). This teacher policy is then distilled into a student policy, which is trained to imitate the teacher’s actions and to

reconstruct the ground-truth environment state from noisy observations. We deploy the student policy zero-shot on real hardware using height

samples from a robot-centric elevation map.
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The policy has access to privileged information such as noiseless ter-

rain measurements, ground friction, and the disturbances that were

introduced.

In the second stage, a student policy is trained to reproduce the

teacher policy’s actions without using this privileged information. The

student policy constructs a belief state to capture unobserved informa-

tion using a recurrent encoder and outputs an action based on this belief

state. During training, we leverage two losses: a behavior cloning loss

and a reconstruction loss. The behavior cloning loss aims to imitate

the teacher policy. The reconstruction loss encourages the encoder to

produce an informative internal representation.

Lastly, we transfer the learned student policy to the physical robot

and deploy it in the real world with onboard sensors. The robot con-

structs an elevation map by integrating depth data from onboard sensors,

and samples height readings from the constructed elevation map to

form the exteroceptive input to the policy. This exteroceptive input is

combined with proprioceptive sensory data and is given to the neural

network, which produces actuator commands.

Problem formulation

We formulate our control problem in discrete time dynamics, where the

environment is fully defined by the state st at time step t. The policy

performs an action at and observes the environment via ot which comes

from an observation model O(ot|st, at). Then, the environment moves

to the next state st+1 with transition probability P(st+1|st, at) and

returns a reward rt+1.

When all states are observable such that ot = st, this can be consid-

ered a Markov Decision Process (MDP). When there is unobservable

information, however, such as external forces or full terrain informa-

tion in our case, the dynamics are modeled as a Partially Observable

Markov Decision Process (POMDP).

The RL objective is to find a policy π∗ that maximizes the expected

discounted reward over the future trajectory, such that

π∗ = argmax
a

E[
∞

∑
t=0

γtrt].

A number of RL algorithms have been developed to solve fully-

observable MDPs and are readily available to be used for training.

However, the case of POMDPs is more challenging since the state is

not fully observable. This is often overcome by constructing a belief

state bt from a history of observations {o0, · · · , ot} in an attempt to

capture the full state. In deep reinforcement learning, this is frequently

done by stacking a sequence of previous observations [54] or by using

architectures which can compress past information such as Recurrent

Neural Networks (RNNs) [55, 56] or Temporal Convolutional Net-

works (TCNs) [4, 57].

Training a complex neural network policy that handles sequential

data naively from scratch can be time-consuming [4]. Therefore we

use privileged learning [45], in which we first train a teacher policy

with privileged information, and then distill the teacher policy into a

student policy via supervised learning.

Training environment

We use RaiSim [58] as our simulator to build the training environment.

There, we simulate multiple ANYmal-C robots on randomly generated

rough terrain in parallel with an integrated actuator model [3] to close

the reality gap.

Terrain

We define parameterized terrain as shown in Figure 6.1. The terrain is

modeled as a height map; further details are provided in supplementary

section S4.

In addition to terrains composed of a variety of slopes and steps,

we modelled four different types of stairs in the training environment;

standard, open, ledged, and random. We use boxes to form the stairs,

because stair risers modeled by a height map are not perfectly verti-

cal; we observed that the policy exploited these non-vertical edges in

simulation, resulting in poor sim-to-real transfer.

Domain randomization

We randomize the masses of the robot’s body and legs, the initial joint

position and velocity, and the initial body orientation and velocity

in each episode. In addition, external force and torque are applied

to the body of the robot and the friction coefficients of the feet are

occasionally set to a low value to introduce slippage.

Termination

We terminate a training episode and start a new one when the robot

reaches an undesirable state. Termination criteria are: body collision

with the ground, large body tilt, and exceeding the joint torque limit

of the actuators. These criteria help shape the motion and obtain

constraint-satisfying behaviors.

Teacher policy training

In the first stage of training we aim to find an optimal reference control

policy which has access to perfect, privileged information and enables

ANYmal to follow a desired command velocity over randomly gener-

ated terrain. The desired command is generated randomly as a vector

vdes ∈ R
3 = (vx, vy, w), where vx, vy represents the longitudinal and

lateral velocity and w represents the yaw velocity, all in the robot’s

body frame.

We used Proximal Policy Optimization (PPO) [59] to train the

teacher policy. The teacher is modeled as a Gaussian policy, at ∼
N (πθ(ot = st), σI), where πθ is implemented by a multilayer per-

ceptron (MLP) parameterized by θ, and σ represents the variance for

each action.

Observation and Action

The teacher observation is defined as oteacher
t = (o

p
t , oe

t , s
p
t ), where

o
p
t refers to the proprioceptive observation, oe

t the exteroceptive ob-

servation, and s
p
t the privileged state. o

p
t contains the body velocity,

orientation, joint position and velocity history, action history, and each

leg’s phase. oe
t is a vector of height samples around each foot with five

different radii. The privileged state s
p
t includes contact states, contact

forces, contact normals, friction coefficient, thigh and shank contact

states, external forces and torques applied to the body, and swing phase

duration.

Our action space is inspired by central pattern generators (CPGs) [4].

Each leg l = {1, 2, 3, 4} keeps a phase variable φl and defines a

nominal trajectory based on the phase. The nominal trajectory is a

stepping motion of the foot tip and we calculate the nominal joint

target qi(φl) for each joint actuator i = {1, · · · , 12} using inverse

kinematics. The action from the policy is the phase difference ∆φl and

the residual joint position target ∆qi. More details of the observation

and action space are in supplementary section S5.

Policy architecture

We model the teacher policy πθ as an MLP. It consists of three MLP

components: exteroceptive encoder, privileged encoder, and the main

network, as shown in Figure 6. The exteroceptive encoder ge receives

oe
t and outputs a smaller latent representation le

t :

le
t = ge(o

e
t )
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The privileged encoder gp receives the privileged state s
p
t and outputs

a latent representation l
priv
t :

l
priv
t = gp(s

p
t )

These encoders compress each input to a more compact representations

and facilitate reuse of some of the teacher policy components by the

student policy. More details on each layer are in supplementary section

S6

Rewards

We define a positive reward for following the command velocity and a

negative reward for violating some imposed constraints. The command-

following reward is defined as follows:

rcommand =

{

1.0, if vdes · v > |vdes|

exp(−(vdes · v − |vdes|)
2), otherwise

(1)

where vdes ∈ R
2 is the desired horizontal velocity and v ∈ R

2 is the

current horizontal body velocity with respect to the body frame. The

same reward is applied to the yaw command as well. We penalize

the velocity component orthogonal to the desired velocity as well as

the body velocity around roll, pitch, and yaw. Additionally, we use

shaping rewards for body orientation, joint torque, joint velocity, joint

acceleration, foot slippage as well as shank and knee collision.

Body orientation reward was used to avoid strange posture of the

body. Joint related reward terms were used to avoid overly aggressive

motion. Foot slippage and collision reward terms were used to avoid

them. We tuned the reward terms by looking at the policy’s behavior

in simulation. In addition to the traversal performance, we checked

the smoothness of the locomotion. All reward terms are specified in

supplementary section S7.

Curriculum

We use two curricula to ramp up difficulty as the policy’s performance

improves. One curriculum adjusts terrain difficulty using an adaptive

method [4] and the other changes elements such as reward or applied

disturbances using a logistic function [3].

For the terrain curriculum, a particle filter updates the terrain pa-

rameters such that they remain challenging but achievable at any point

during policy training [4].

The second curriculum multiplies the magnitude of domain ran-

domization and some reward terms (joint velocity, joint acceleration,

orientation, slip, thigh and shank contact) by a factor that is monotoni-

cally increasing and asymptotically trending to 1:

ck+1 = (ck)
d,

where ck is the curriculum factor at the kth iteration and 0 < d < 1 is

the convergence rate.

Student policy training

After we train a teacher policy that can traverse various terrain with

the help of privileged information, we distill it into a student pol-

icy that only has access to information that is available on the real

robot. We use the same training environment as for the teacher pol-

icy, but add additional noise to the student height sample observation:

ostudent
t = (o

p
t , n(oe

t )), where n(oe
t ) is a noise model applied to the

height sample input. The noise model simulates different failure cases

of exteroception frequently encountered during field deployment and

is detailed below.

When there is a large noise in the exteroception, it becomes unob-

servable, thus the dynamics is considered to be POMDP. In addition,

the privileged states are not observable due to the lack of sensors to

directly measure. Therefore, the policy needs to consider the sequential

correlation to estimate the unobservable states. We propose to use a

recurrent belief state encoder to combine sequences of both exterocep-

tion and proprioception to estimate the unobservable states as a belief

state.

The student policy consists of a recurrent belief state encoder and

an MLP, as shown in Figure 6.2. We denote the hidden state of the

recurrent network by ht. The belief state encoder takes ostudent
t and ht

as input and outputs a latent vector bt, which we refer to as the belief

state. The goal is to match the belief state bt with the feature vector

(le
t , l

priv
t ) of the teacher policy which encodes all locomotion-relevant

information. We then pass o
p
t and bt to the MLP which computes the

output action.

The MLP structure remains the same as for the teacher policy, such

that we can reuse the learned weights of the teacher policy to initialize

the student network and speed up training.

Training is performed in supervised fashion by minimizing two

losses: a behavior cloning loss and a reconstruction loss. The behavior

cloning loss is defined as the squared distance between the student

action and the teacher action given the same state and command. The

reconstruction loss is the squared distance between the noiseless height

sample and privileged information (oe
t , s

p
t ) and their reconstruction

from the belief state. We generate samples by rolling out the student

policy to increase robustness [60, 61].

Height sample randomization

During student training, we inject random noise into the height samples

using a parameterized noise model n(õe
t |o

e
t , z), z ∈ R

8×4. We apply

two different types of measurement noise when sampling the heights,

as shown in Figure 7A:

1. Shifting scan points laterally.

2. Perturbing the height values.

Each noise value is sampled from a Gaussian distribution, and the noise

parameter z defines the variance. Both types of noise are applied in

three different scopes, all with their own noise variance: per scan point,

per foot, and per episode. The noise values per scan point and per

foot are resampled at every time step while the episodic noise remains

constant for all scan points.

Additionally, we define three mapping conditions with associated

noise parameters z to simulate changing map quality and error sources,

as shown in Figure 7B.

1. Nominal noise assuming good map quality during regular opera-

tion.

2. Large offsets through high per-foot noise to simulate map offsets

due to pose estimation drift or deformable terrain.

3. Large noise magnitude for each scan point to simulate complete

lack of terrain information due to occlusion or mapping failure.

These three mapping conditions are selected at the beginning of each

training episode in a ratio of 60%, 30%, and 10%.

Finally, we divide each training terrain into cells and add an ad-

ditional offset to the height sample, depending on which cell it was

sampled from. This simulates transitions between areas with different

terrain characteristics, such as vegetation and deep snow. The param-

eter vector z is also part of a learning curriculum and its magnitude

increases linearly with training duration.

The height sample representation is specified in more detail in

supplementary section S8.



Research Article ETH Zurich and Intel 13

Select with probability

Height scan noise model

Per point noise (sampled every timestep)

Per foot noise (sampled every timestep)

Per foot noise (fixed through episode)

Per point outlier (only applied to some points)

Nominal noiseZero noise

Large offset Large noise

A B Different noise levels

exteroceptive

RNN
proprioceptive c

gate

+

attention

belief state

hidden
next

hidden

Belief encoder
C D

exteroceptive

gate

attention

estimated

privileged info
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Belief decoder

+
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exteroceptive info

privileged decoder

exteroceptive decoder

Fig. 6. Details of robust terrain perception components. (A) During student training, random noise is added to the height samples. The noise is

sampled from a Gaussian distribution N (0, zl ∈ R
8), where each zl

i controls a different noise component i per leg l. (B) We use multiple noise

configurations z to simulate different operating conditions. “Zero noise" is applied during teacher training, while “nominal noise" represents

normal mapping conditions during student training. “Large offset" noise simulates large map offsets due to pose estimation drift or deformable

terrain surfaces. “Large noise" simulates a complete lack of terrain information due to occlusion or sensor failure. (C) The student policy belief

encoder incorporates a recurrent core and an attentional gate that integrates the proprioceptive and exteroceptive modalities. The gate explicitly

controls which aspects of exteroceptive data to pass through. (D) The belief decoder has a gate for reconstructing the exteroceptive data. It is

only used during training and for introspection into the belief state.



Research Article ETH Zurich and Intel 14

Belief state encoder

The recurrent belief state encoder encodes states that are not directly

observable. To integrate proprioceptive and exteroceptive data, we

introduce a gated encoder as shown in Figure 7C, inspired by gated

RNN models [62, 63] and multimodal information fusion [64–66].

The encoder learns an adaptive gating factor that controls how much

exteroceptive information to pass through. First, proprioception o
p
t ,

exteroceptive features from noisy observations le
t = ge(õe

t ), and hidden

state st are encoded by the RNN module into the intermediate belief

state b′t. Then, the attention vector α is computed from b′t. It controls

how much exteroceptive information enters the final belief state bt:

b′t, ht+1 = RNN(o
p
t , le

t , ht)

α = σ(ga(b
′
t))

bt = gb(b
′
t) + le

t ⊙ α

Here, ga and gb are fully-connected neural networks and σ(·) is the

sigmoid function.

The same gate is used in the decoder, where it is used to reconstruct

the privileged information and the height samples (Figure 7D). This is

used to calculate a reconstruction loss that encourages the belief state

to capture veridical information about the environment.

We use the Gated Recurrent Unit (GRU) [62] as our RNN architec-

ture. The evaluation of the effectiveness of gate structure is presented

in supplementary section S9.

Deployment

We deployed our controller on the ANYmal C robot with two different

sensor configurations, either using two Robosense Bpearl [67] dome

Lidar sensors or four Intel RealSense D435 depth cameras [68]. We

trained our policy in PyTorch [69] and deployed on the robot zero-shot

without any fine-tuning. We build a robot-centric 2.5D elevation map

at 20 Hz by estimating the robot’s pose and registering the point-cloud

readings from the sensors accordingly. The policy runs at 50 Hz and

samples the heights from the latest elevation map, filling a randomly

sampled value if no map information is available at a query location.

We developed an elevation mapping pipeline for fast terrain map-

ping on a graphics processing unit (GPU) to parallelize point-cloud

processing. We follow a similar approach to Fankhauser et al. [17] to

update the map in a Kalman-filter fashion and additionally perform

drift compensation and ray casting to obtain a more consistent map.

This fast mapping implementation was crucial to maintain fast process-

ing rates and keep up with the fast locomotion speeds achieved by our

controller.
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S1. Nomenclature

s state

o observation

b belief state

h hidden state

l latent feature

v linear velocity

ω angular velocity

τ joint torque

q joint position

φ CPG phase

∆φ0 CPG phase base frequency

ck curriculum factor

csk student curriculum factor

Lbc behavior cloning loss

Lre reconstruction loss

(·)p proprioceptive quantity

(·)e exteroceptive quantity

(·)priv privileged quantity

(·)target target quantity

(·)t quantity at time t
˜(·) noisy quantity
˙(·) first derivative
¨(·) second derivative

g(·) Multilayer Perceptron (MLP) encoder

N () Normal distribution

⊙ Hadamard product

p(·) foot trajectory function

IK(·) inverse kinematics function

S2. Evaluating the importance of exteroception: Additional

experiments in simulation

We compare the success rate over various stepped terrain and stairs in

simulation to further evaluate the performance quantitatively.

The robot was given a fixed forward velocity command of 0.7 m/s

for a duration of 10 seconds. We collected 300 trials to calculate

the success rate, where we consider a trial a success if the robot can

traverse 4 m without failure. As shown in Figure 8A, 8B our controller

significantly outperformed the baseline and can traverse a much wider

range of terrain.

S3. Training details

The control frequency of the policy was set to 50 Hz, and 250 trajectory

time steps per environment are collected for one training iteration. We

parallelized the simulation environment to perform rollouts with 1000

environments simultaneously. We used our custom implementation of

PPO [59] to train the teacher policy [70]. Observations are normalized

using running mean and standard deviation before giving them to the

policy network. The curriculum factors were updated exponentially

every training episode ck+1 = cd
k , with convergence rate d = 0.98. We

use the Adam [71] optimizer with exponential learning rate decay. The

hyperparameters for PPO are given in Table S1.

For student training, we performed rollouts with 300 environments

and collected 400 timesteps of trajectory for one training iteration. We

start the student training without height sample noise and gradually

increase the noise level through a student curriculum factor which

linearly increases over training epochs. We use flat terrain for the

first 10 epochs, and then enable the adaptive curriculum for the terrain

generation. After 20 epochs, we increase the student curriculum factor

csk linearly until we reach 100 epochs. Then, we keep csk = 1.0. We

train the RNN unit of the encoder with Truncated Backpropagation

Table S1. Hyperparameters for PPO.

learning rate 5.0 E-4

learning rate decay gamma 0.9999

discount factor 0.996

learning epoch 2

GAE-lambda 0.95

clip ratio 0.2

entropy coefficient 0.005

batch size 8300

Table S2. Hyperparameters for student training.

learning rate 5.0 E-4

truncate step for TBPTT 10

learning epoch 2

Through Time (TBPTT). The ratio between behavior cloning loss and

reconstruction loss is 0.5. Therefore the loss is set to Lbc + 0.5 · Lre.

Hyperparameters for student training are given in Table S2.

S4. Terrain generation

The terrain types are rough, rough discrete, large steps, boxes, grid

steps, step stairs, and stairs, as shown in Figure 6.1. There are four

types of stairs: standard stair, open stair, ledged stair, and random

stair. Each terrain type is parameterized by different terrain properties,

which are randomized during training.

The rough terrain is parameterized by Perlin noise [72] and the

rough discrete and large steps are created by quantizing it. While

rough discrete terrain does not restrict the number of quantization

levels, large steps only allow for two height levels (h ∈ [0, 0.4] m).

For grid steps, the parameters are mean step height (h ∈ [0.05, 0.4] m)

and step width (d ∈ [0.2, 0.7] m). Some examples of different grid

steps are shown in Figure 8A. Note that the parameter range shown in

the figure is only for evaluation and different from the range used during

training. Parameters for stairs contain step depth (d ∈ [0.25, 1.0] m)

and height (h ∈ [0.01, 0.22] m). The height and depth values for

random stair were set at each according to a ratio ǫ ∼ N (1.0, 0.2),
such that x̂ = x · ǫ, where x is the given depth or height parameter.

Examples of different stairs are shown in Figure 8B. The boxes terrain

consists of multiple boxes with maximum height 0.25 m lying in a

random position with random yaw angles.

S5. Observation and action

The observation vectors are defined in Table S3. Proprioceptive input

includes command, joint, and body information, as well as leg phase

information. The central pattern generator (CPG)’s phase information

consists of ∆φl , cos φl , sin φl , and base frequency for each leg l. For

exteroception, we use height samples around each foot instead of the

local elevation map. The circular sampling pattern comprises {6, 8,

10, 12, 16} points around each foot, with radii {0.08, 0.16, 0.26, 0.36,

0.48} m, respectively.

The action is defined as 〈∆φl , ∆qi〉, where ∆φl and ∆qi refer to the

phase offset per leg (l ∈ {legs}) and the residual joint position target

(i ∈ {1, · · · , 12}), respectively. We have a nominal foot trajectory

p(φ) : R −→ R
3 that maps each φl to a target foot position, which
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Table S3. Observations. Proprioception is used for both teacher

and student training. Exteroception is given in the form of height

samples. The privileged information is used only for teacher training.

Observation type Input Dim.

Proprioception command 3

body orientation 3

body velocity 6

joint position 12

joint velocity 12

joint position history (3 time steps) 36

joint velocity history (2 time steps) 24

joint target history (2 time steps) 24

CPG phase information 13

Exteroception height samples 208

Privileged info. contact states 4

contact forces 12

contact normals 12

friction coefficients 4

thigh and shank contact 8

external forces and torques 6

airtime 4

generates periodic stepping motion as φ cycles within [0, 2π). From

the action, the joint position target for a leg l is defined as q
target
i∈l =

IK(p(φl + ∆φl + ∆φ0)) + ∆qi∈l , using analytic inverse kinematics

IK(·) and base phase frequency ∆φ0. The nominal foot trajectory is

defined as follows.

If the phase is in swing-up (0 ≤ φl ≤ π/2),

pl(φl) = 〈xn
l , yn

l , zn
l + 0.2 · (−2t3

l + 3t2
l )〉,

where tl = 2/π · φl .

{x, y, z}n
l is the nominal foot position at the default stance configu-

ration. The cubic Hermite spline connects z = zn
l at φl = 0 and

z = zn
l + 0.2 at φl = π/2.

In the swing-down phase (π/2 < φl ≤ π), the foot height is

computed as

pl(φl) = 〈xn
l , yn

l , zn
l + 0.2 · (2t3

l − 3t2
l + 1)〉,

where tl = 2/π · φl − 1,

which is symmetric to the previous function.

During the stance phase (π < φl ≤ 2π), pl(φl) = 〈xn
l , yn

l , zn
l 〉.

S6. Network architecture

The policy network is composed of multiple MLPs. The height samples

are first encoded into a 24 × 4 = 96 dimensional latent vector, and

the privileged information is encoded into a 24 dimensional latent

vector using MLP-based encoders (ge, gp). Each encoder has two

hidden layers with {80, 60} and {64, 32} hidden units respectively.

The height samples are first fed into the encoder separately for each

foot and then concatenated into one feature vector. Then these features

are concatenated with proprioceptive observations and fed into another

MLP with three hidden layers {256, 160, 128}. The activation function

for all MLPs is LeakyReLU [73].

We use a GRU with an exteroceptive gate for the belief encoder

(Figure 7C). The GRU consists of 2 stacked layers with 50 hidden

units each. The belief encoder and exteroceptive gate gb, ga are used

to calculate 96 + 24 = 120 dimensional belief state bt and 96 dimen-

sional attention vector α. Each encoder has two hidden layers with

{64, 64} and {64, 64} hidden units each. The filtered exteroceptive

information le
t ⊙ α is added to gb(b

′
t), with zero-padding to match the

dimensionality.

S7. Reward function

The reward function is defined as r = 0.75(rlv + rav + rlvo) + rb +
0.003r f c + 0.1rco + 0.001rj + 0.08rjc + 0.003rs + 1.0 · 10−6rτ +
0.003rslip. The individual terms are defined as follows.

• Linear Velocity Reward (rlv): This term encourages the policy

to follow a desired horizontal velocity (velocity in xy plane)

command:

rlv =











exp(−|v|2), if |vdes| = 0

1.0, else if vdes · v > |vdes|

exp(−(vdes · v − |vdes|)
2), otherwise

where vdes ∈ R
2 is the desired horizontal velocity and v ∈ R

2 is

the current body velocity with respect to the body frame.

• Angular Velocity Reward (rav): This term encourages the policy

to follow a desired yaw velocity command:

rav =











exp(−ω2
z ), if ωdes = 0

1.0, else if ωdes · ωz > ωdes

exp(−(ωdes · ωz − ωdes)
2), otherwise

where ωdes is the desired yaw velocity and ωz is the current yaw

velocity with respect to the body frame.

• Linear Orthogonal Velocity Reward (rlvo): This term penalizes

the velocity orthogonal to the target direction:

rlvo = exp(−3.0|vo|
2),

where vo = v − (vdes · v)vdes.

• Body motion Reward (rb): This term penalizes the body velocity

in directions not part of the command:

rbm = −1.25v2
z − 0.4|ωx| − 0.4|ωy|.

• Foot Clearance Reward (r f c): When a leg is in swing phase,

i.e., φi ∈ [0, π), the robot should lift the corresponding foot

higher than its surroundings. However, to prevent the robot from

manifesting unnecessarily high foot clearance, we give a penalty

reward r f cl to regularize the leg trajectory. Hsample,l is the set of

sampled heights around the l-th foot. Then, the clearance cost is

defined as

r f cl =

{

−1.0, if max(Hsample,l) < −0.2

0.0 otherwise

r f c =
4

∑
l=1

r f cl

Note that height samples are sampled with respect to the foot

height, therefore -0.2 means the terrain is 0.2 m lower than the

foot; ergo, the foot is 0.2 m higher than the sampled terrain height.
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• Shank and Knee Collision Reward (rco): We want to penalize

undesirable contact between the terrain and robot parts other than

the foot, to avoid hardware damage:

rco =

{

−ck, if shank or knee is in collision

0.0 otherwise

where ck is the curriculum factor that increases monotonically

and converges to 1.

• Joint Motion Reward (rj): This term penalizes joint velocity and

acceleration to avoid vibrations:

rs = −ck

12

∑
i=1

(0.01q̇i
2 + q̈i

2),

where q̇i and q̈i are the joint velocity and acceleration, respec-

tively.

• Joint Constraint Reward (rjc): This term introduces a soft con-

straint in the joint space. To avoid the knee joint flipping in the

opposite direction, we give a penalty for exceeding a threshold:

rjc,i =

{

−(qi − qi,th)
2, if qi > qi,th

0.0 otherwise

rjc =
12

∑
i=1

rjc,i

where qi,th is a threshold value for the ith joint. We only set

thresholds for the knee joint.

• Target Smoothness Reward (rs): The magnitude of the first and

second order finite difference derivatives of the target foot po-

sitions are penalized such that the generated foot trajectories

become smoother:

rs = −ck

12

∑
i=1

((qdes
i,t − qdes

i,t−1)
2 + (qdes

i,t − 2qdes
i,t−1 + qdes

i,t−2)
2),

where qdes
i,t is the joint target position of joint i at time step t.

• Torque Reward (rτ): We penalize joint torques to reduce energy

consumption (τ ∝ electric current):

rτ = −ck

12

∑
i=1

τ2
i ,

where τi is the ith joint’s torque calculated as output by the actua-

tor network.

• Slip Reward (rslip): We penalize the foot velocity if the foot is in

contact with the ground to reduce slippage:

rslip = −ck ∑
l∈{foot in contact}

v2
f ,l ,

where v f ,l is the velocity of lth foot in contact with the ground.

S8. Height sample noise

During student training, we randomize the height samples drawn

around each foot (Figure 7A). We perturbed the position of each sample

and add noise to the measured height value as follows.

xp = rp cos(θp) + ǫpx + ǫ f x + wx

yp = rp sin(θp) + ǫpy + ǫ f y + wy

hp = h(xp, yp) + ǫpz + ǫ f z + wz + ǫoutlier

where h(xp, yp) refers to the terrain height at position (xp, yp). rp

is the radial distance of the point p and θp is the azimuthal angle

of p in polar coordinates around the foot. ǫpx, ǫpy, ǫpz represents

the noise that is sampled for each individual point every time step.

ǫ f x, ǫ f y, ǫ f z represents the noise that is sampled for each foot every

time step. wx, wy, wz represents the noise that is sampled for each foot

per episode. ǫoutlier is a large noise intermittently added to simulate

outliers.

Each noise is sampled from the normal distribution using the param-

eter z. ǫpx, ǫpy ∼ N (0, z0), ǫpz ∼ N (0, z1), ǫ f x, ǫ f y ∼ N (0, z2),

ǫ f z ∼ N (0, z3), ǫoutlier ∼ N (0, z4) with probability p = z5,

wx, wy ∼ N (0, z6), wz ∼ N (0, z7).
We defined three conditions for the student training; nominal, offset,

noisy. Each parameter z is defined as follows.

znominal = 〈0.004, 0.005, 0.01, 0.04, 0.03, 0.05, 0.1〉 (2)

zo f f set = 〈0.004, 0.005, 0.01, 0.1csk, 0.1csk, 0.02, 0.1〉 (3)

znoisy = 〈0.004, 0.1csk, 0.1csk, 0.3csk, 0.3csk, 0.3csk, 0.1〉(4)

where csk is the student curriculum factor which linearly increases over

training episodes. We randomly picked one of the conditions at the

beginning and in the middle of a trajectory. The probabilities are 60%,

30% and 10%, respectively.

S9. Ablation study of attention gate in belief encoder

We evaluated the effect of the exteroceptive gate by comparing the

performance of the belief encoder with and without the gate. For

this purpose, we trained four student policies using different belief

encoders: "GRU gate", "GRU no gate", "MLP gate" and "MLP no

gate". "GRU gate" uses the proposed exteroceptive gate while "GRU

no gate" does not use it. "MLP" uses feed forward network instead of

the recurrent unit. Figure S2A shows the learning curve of the student

training using four different architectures. The result shows that using

a recurrent unit improves the performance. MLP failed to reconstruct

the privileged information. Moreover, the exteroceptive gate constantly

improves the performance for both GRU and MLP architectures. Note

that in the beginning of the training, we started without exteroceptive

noise and terrain curriculum, and increased them gradually. This effect

can be seen as a steep increase of losses and decrease of reward in the

beginning.

To evaluate the learned model, we collected 300 time steps with

100 different terrain parameters for each terrain type with two noise

conditions: small and large. Each noise parameter z are defined as

follows,

zsmall = 〈0.004, 0.005, 0.04, 0.04, 0.04, 0.01, 0.1〉 (5)

zlarge = 〈0.004, 0.3, 0.2, 0.1, 0.1, 0.03, 0.1〉 (6)

Then we calculated the squared distance between student action and

teacher action, as well as decoded height samples and ground-truth

height samples. As shown in Table S4, S5, the gated encoder out-

performed the non-gated encoder for both noise cases. The encoder

utilizes the exteroceptive input through the skip connection when the
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exteroception is reliable. When the height samples contain large noise,

the exteroception does not provide reliable information. In this case,

the gated structure and non-gated structure perform similarly (Table

S4, S5). This indicates that the gated structure facilitates the use of

exteroceptive information when it is reliable but does not sacrifice

robustness when it becomes unreliable.

To further evaluate the policies’ performance, a step traversal suc-

cess rate were compared against each policy. The robot was initialized

in front of various height of step and given a constant velocity com-

mand (0.8 m/s) towards the step. We collected 100 trials for each

height of the step and showed the success rate in Figure S2B. The

result shows that "GRU gate" performs the best for both small noise

and large noise case. As seen in the small noise case, the difference

between "GRU gate" and "GRU no gate" is bigger than the large noise

case. This supports that the gated structure can utilize exteroceptive

information more when it is reliable.
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Table S4. Action difference between teacher and student under different noise conditions. The quantities are presented as empirical means with

standard deviations. The belief encoder with the exteroceptive gate exhibits smaller action difference for all types of terrain when the noise is

small. When the exteroception is unreliable (large noise), they perform similarly; this indicates that the gate blocks the skip connection such that

our encoder becomes similar to the proprioceptive model in this condition.

Small exteroceptive noise Large exteroceptive noise

terrain ours without gate ours without gate

rough 0.690±0.40 0.746±0.40 0.879±0.46 0.997±0.44

rough discrete 0.787±0.45 0.857±0.54 0.878±0.53 0.964±0.55

step stair 0.652±0.39 0.687±0.43 0.975±0.49 1.043±0.50

large step 0.719±0.40 0.855±0.43 1.142±0.55 1.225±0.54

grid steps 1.444±0.56 1.674±0.58 2.218±0.70 2.212±0.70

standard stair 0.854±0.67 0.961±0.72 1.387±0.59 1.438±0.56

open stair 0.842±0.61 0.938±0.65 1.356±0.55 1.428±0.53

ledged stair 0.819±0.39 0.929±0.42 1.373±0.53 1.416±0.54

boxes 0.928±0.53 1.123±0.56 1.614±0.64 1.683±0.68

random stair 0.872±0.45 0.956±0.46 1.489±0.59 1.526±0.58

Table S5. Reconstruction error of height samples under different noise conditions. The quantities are presented as empirical means with stan-

dard deviations. The belief encoder with the exteroceptive gate had smaller reconstruction error for all types of terrain. This shows the effective-

ness of the gated skip connection when the exteroception is reliable. When the noise is large, the gated encoder also performed better than the

non-gated encoder, although the difference was smaller than in the small-noise setting.

Small exteroceptive noise Large exteroceptive noise

terrain ours without gate ours without gate

rough 1.21E-03±2.8E-04 1.36E-03±6.1E-04 1.03E-03±2.3E-04 1.17E-03±5.9E-04

rough discrete 9.99E-04±3.3E-04 1.03E-03±3.9E-04 1.02E-03±3.5E-04 1.05E-03±3.5E-04

step stair 1.13E-03±4.4E-04 1.31E-03±4.7E-04 1.41E-03±4.3E-04 1.48E-03±4.6E-04

large step 1.37E-03±8.0E-04 2.03E-03±1.0E-03 1.95E-03±8.2E-04 1.95E-03±7.8E-04

grid steps 3.05E-03±4.1E-04 4.77E-03±7.4E-04 4.17E-03±5.0E-04 4.39E-03±5.1E-04

standard stair 2.59E-03±2.2E-03 3.11E-03±2.2E-03 2.68E-03±1.6E-03 2.69E-03±1.5E-03

open stair 2.61E-03±2.3E-03 3.06E-03±2.0E-03 2.63E-03±1.2E-03 2.64E-03±1.1E-03

ledged stair 2.53E-03±1.7E-03 3.03E-03±1.5E-03 2.62E-03±1.2E-03 2.63E-03±1.1E-03

boxes 2.13E-03±1.4E-03 3.38E-03±1.5E-03 3.00E-03±1.0E-03 3.09E-03±1.2E-03

random stair 2.31E-03±9.1E-04 2.89E-03±8.2E-04 2.72E-03±7.9E-04 2.74E-03±8.0E-04



Research Article ETH Zurich and Intel 22

A

B

Fig. S1. Comparison of the presented controller to a proprioceptive baseline [4] over random terrain. We collected 300 trials with a fixed veloc-

ity command over 41 × 41 different terrain parameter combinations and compared success rates. Our controller was able to traverse a much wider

range of terrain profiles on both grid steps (A) and stairs (B).

B Step traversal success rate

A Learning curves of student training

Small noise

Large noise

Fig. S2. Ablation analysis of the presented belief encoder. We compared GRU gate, GRU no gate, MLP gate and MLP no gate. MLP setting

uses MLP instead of GRU as its encoder. Gate setting uses proposed attention gate while no gate setting exclude it.(A) Learning curve of the

student policy training. GRU worked better than MLP in all cases. Attention gate worked better than without attention for both GRU and MLP.

The increase of the losses and decrease of reward in the beginning is due to the curriculum. (B) Step traversal success rate tested in small noise

and large noise cases. The robot is initialized with random joint configuration and initial velocity and given a constant command towards the step.

If the robot traversed the step with both front and hind legs it is considered as success. 100 trials were conducted.
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