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Abstract

Training end-to-end policies from image data to directly
predict navigation actions for robotic systems has proven
inherently difficult. Existing approaches often suffer from
either the sim-to-real gap during policy transfer or a lim-
ited amount of training data with action labels. To ad-
dress this problem, we introduce Vision–Language Distance
(VLD) learning, a scalable framework for goal-conditioned
navigation that decouples perception learning from policy
learning. Instead of relying on raw sensory inputs during
policy training, we first train a self-supervised distance-to-
goal predictor on internet-scale video data. This predictor
generalizes across both image- and text-based goals, pro-
viding a distance signal that can be minimized by a re-
inforcement learning (RL) policy. The RL policy can be
trained entirely in simulation using privileged geometric
distance signals, with injected noise to mimic the uncer-
tainty of the trained distance predictor. At deployment, the
policy consumes VLD predictions, inheriting semantic goal
information—“where to go”—from large-scale visual train-
ing while retaining the robust low-level navigation behav-
iors learned in simulation. We propose using ordinal con-
sistency to assess distance functions directly and demon-
strate that VLD outperforms prior temporal distance ap-
proaches, such as ViNT and VIP. Experiments show that our
decoupled design achieves competitive navigation perfor-
mance in simulation while supporting flexible goal modal-
ities, providing an alternative and, most importantly, scal-
able path toward reliable, multimodal navigation policies.

1. Introduction

Scalable training on diverse, real-world(-like), internet-
scale datasets has emerged as one of the most promising ap-
proaches for learning broadly capable navigation policies.
Recent advances in embodied AI have shown that policies
trained on large-scale multimodal data exhibit robustness
and generalization that narrow, task-specific approaches fail

to achieve [4]. This highlights the importance of pursu-
ing navigation research under conditions that better mirror
the real world, rather than limiting it to controlled lab set-
tings [26, 50].

Traditional imitation learning and expert demonstra-
tion pipelines offer a straightforward pathway for train-
ing navigation agents [2]; however, since expert-labeled
actions—typically in the form of future trajectories repre-
sented as 2D or 2.5D waypoints—are expensive to collect,
they remain fundamentally constrained by the scarcity of
annotated trajectories [46]. Initial large-scale efforts, such
as GNM [39], ViNT [40], and NoMaD [41], have collected
on the order of 200 hours of demonstrations across multi-
ple robotic embodiments, illustrating the promise of cross-
embodiment learning through curated multi-robot datasets.
Nevertheless, these datasets still exhibit strong straight-
walking bias (the majority of labeled actions correspond
to simply moving forward), raising doubts about whether
annotation-heavy pipelines can scale to broadly generaliz-
able navigation. Moreover, such approaches largely over-
look embodiment-specific signals and rely solely on image
inputs, thereby precluding the use of proprioception, which
is often crucial for effective navigation.

Reinforcement learning (RL) enables agents to develop
robustness through interaction and exploration. However,
due to its sample inefficiency in real-world environments,
RL training for navigation heavily depends on simula-
tors. Collecting diverse environmental assets and simulat-
ing photorealistic images with corresponding physical in-
teractions remain open research challenges, hindering the
effective transfer of visual navigation policies from simula-
tion to reality [3, 26, 35, 50, 52].

In this work, we propose an alternative framework
that combines the strengths of imitation learning and RL
while avoiding their annotation and sim-to-real bottlenecks.
Rather than conditioning policies on raw visual inputs, we
decouple the problem into two stages: (i) training a scalable,
self-supervised distance-to-goal predictor on internet-scale
video data, and (ii) training RL policies in simulation that
consume this distance signal directly. Unlike expert-labeled
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Figure 1. Overview of our framework. (A) Training stage: we separately train a temporal Vision–Language Distance (VLD) function on
diverse real-world and synthetic video datasets, and an RL navigation policy in simulation using geometric distance-to-goal signals with
injected noise to mimic real predictor uncertainty. (B) Deployment stage: the trained RL policy consumes predictions from the learned
VLD model—specified by either image or text goals—to navigate in simulated and real-world environments.

trajectories, the distance signal—defined as the number of
temporal steps from the current view to a goal observa-
tion—can be obtained from sequential video without anno-
tation, making it both scalable and domain-agnostic.

We curate 3,000 hours of diverse trajectories
from synthetic environments [35], internet-scale walking
videos [26], and embodied datasets [9, 12, 17], spanning a
wide variety of indoor and outdoor scenes. This design lets
large-scale video learning provide the perception of where
to navigate, while RL in simulation focuses on training a
sensory–motor control policy for how to navigate, without
relying on vision and instead using geometric signals that
transfer robustly from simulation to the real world [22].
In this way, distance prediction emerges as a central self-
supervised signal for general navigation.

To broaden applicability, we extend the problem to the
more general setting of vision–language goal navigation. In
practice, specifying a navigation target via natural language
is often more convenient than providing a reference image,
especially in real-world deployments where an image may
not be available. To enable this, we bootstrap a subset of our
data with vision–language models [23], generating textual
goal descriptions paired with video trajectories [14]. This
allows us to train a multimodal distance predictor that can
operate with either image or text goals. We refer to this
function as the Vision–Language Distance (VLD), which
estimates the distance between the current egocentric view
and a goal specified in either modality.

On the control side, to reflect the inherent uncertainty of
distance-function predictions, we expose the RL policy dur-
ing simulation training to noisy distance signals generated
by a lightweight MLP trained to mimic the error distribu-
tion of our learned predictor. This prepares the policy for

the noisy predictions it will encounter at deployment.
Together, these components form the foundation of our

framework for scalable, multimodal, and transferable nav-
igation policies. Our main contributions are: (i) a scalable
framework for training vision–language distance (VLD)
predictors on internet-scale real-world data, outperform-
ing prior designs for temporal distance functions such as
ViNT [40] and VIP [27]; (ii) a novel evaluation method-
ology for temporal distance functions, introducing ordinal
consistency as the first principled way to evaluate distance
predictors in isolation rather than only through downstream
policy success; and (iii) a navigation framework that de-
couples RL policy training in simulation from perception
learning on internet-scale data, combining robust RL con-
trol with scalable semantic understanding.

2. Related Work

2.1. Temporal Distance Functions
Temporal distance has evolved from graph-based heuristics
to scalable self-supervised learning. ViNG regressed tem-
poral steps between observation pairs with negative min-
ing and planned over an experience graph [37], but lacked
closed-loop RL policies for robustness. Building on this
idea, ViNT and NoMaD applied Transformer encoders over
observation and goal embeddings, supervising both distance
and short-horizon actions [40, 41]. While validating dis-
tance as a useful signal, these approaches primarily treated
it as an auxiliary to the policy, leaving open the question of
how well the distance estimator generalizes in isolation.

VIP reframed representation learning as goal-
conditioned value prediction, where Euclidean distance in
latent space acts as a reward [27]. Quasimetric RL formal-
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ized multi-goal optimal values as quasimetric distances,
improving sample efficiency across state- and image-based
tasks [29, 44]. Yet most evaluations still emphasize down-
stream success, rather than direct validation of the distance
function itself.

Motivated by these gaps, we adopt pairwise supervision
with negative mining but design a Transformer decoder
that queries distance from the goal signal. Unlike prior
work, we treat the distance estimator as a first-class prod-
uct, and replace mean-squared error with an inlier–outlier
Gaussian mixture NLL [30], yielding calibrated predictions
and uncertainty estimates that provide a reliability signal
for downstream policies. Furthermore, we introduce a di-
rect evaluation methodology for distance functions based
on ordinal consistency, which tests whether predicted dis-
tances rank pairs in the same order as ground-truth dis-
tances—providing a principled way to validate distance es-
timators in isolation rather than only through downstream
policy success.

2.2. Navigation Policies
Goal-conditioned RL trains policies conditioned on state,
image, or language goals [25]. While point-goal tasks
are largely solved [45], image- and language-goal naviga-
tion remain challenging due to reliance on simulators and
sim-to-real gaps [48, 52]. To mitigate this, we train RL
policies with privileged geometric distances in simulation
and replace them at deployment with predictions from our
learned VLD, reducing dependence on hard-to-obtain sim-
ulator photorealism for navigation training [7]. Related dis-
tillation and privileged-information approaches [10, 21, 28]
differ in that we directly substitute a raw privileged value
with a learned predictor, offering a simple yet effective sim-
to-real bridge.

Imitation learning from demonstrations [6, 26, 38–
41] has improved generalization through curated datasets,
but remains limited by annotation costs. Our approach
avoids action labels entirely, scaling supervision via self-
supervised distance learning on internet-scale video.

2.3. Multimodal Navigation
The emergence of vision–language–action (VLA) mod-
els [4, 19] has pushed toward tightly coupling perception,
language understanding, and control in a single founda-
tion model. While this integration achieves impressive gen-
erality, it comes with a high computational cost and lim-
ited scalability. In contrast, our approach explicitly decou-
ples perception from control: we extend the temporal dis-
tance function with CLIP-based text encoding, enabling a
Vision–Language Distance (VLD) predictor that handles
both image and language goals. This design maintains the
practicality of multimodal goals while simplifying scaling,
since perception can benefit from internet-scale pretraining

without requiring full-scale language models.

3. Method

3.1. Temporal Distance Function
We define the temporal distance function as a mapping
from the current egocentric observation and a goal speci-
fication (either visual or textual) to the predicted number
of steps required for an agent to reach the goal under an
optimal policy. Formally, given a current observation ot
and a goal description g, the temporal distance function
Td(ot, g) estimates the expected temporal horizon between
the two. Unlike action-labeled supervision, temporal dis-
tance is naturally available from sequential video or trajec-
tory data, making it a scalable, annotation-free signal that
can be mined from large-scale video datasets.

3.1.1. Evaluation Methodology
Our goal is not to obtain perfectly accurate predictions of
temporal distance, which is inherently ambiguous and often
impossible to infer exactly from a single view (e.g., distance
from a bedroom to a kitchen may vary drastically across
apartments). Instead, what matters is that the learned func-
tion provides a useful ordering: it should reliably distin-
guish between near and far goals—for instance, recognizing
that from a bedroom view, the kitchen is much closer than
the city park—even if the absolute values are imprecise.

We evaluate this principal property with ordinal con-
sistency, which measures whether predicted distances de-
crease as the agent approaches the goal and increase when
it moves away. This is quantified using Kendall’s τ , a rank
correlation coefficient, lying in the range [−1, 1], where
τ = 1 indicates perfect agreement, τ = −1 indicates com-
plete disagreement, and τ = 0 corresponds to random or-
dering [18]. It is fully scale-invariant, capturing correlation
between predicted and ground truth distances, and aligning
with our focus on relative rather than absolute accuracy.

3.1.2. Model architecture
Encoders. RGB observations are encoded with DINOv2
(small) [32]. Text goals are processed by a CLIP text
encoder (ViT-B/32) [33], projected into the same dimen-
sional space as DINOv2-small tokens. Both encoders re-
main frozen in all experiments.

Goal tokens. Image and text tokens are concatenated
as G = [Gtext;Gimg], with modality and positional embed-
dings added. Missing modalities are masked, enabling the
model to support image-only, text-only, or joint goals.

Decoder and outputs. An L-layer Transformer de-
coder attends from observation queries to the goal memory
G, yielding outputs Z. From the CLS token, we predict:

t̂ = ReLU(MLPt(ZCLS)), ĉ = σ(MLPc(ZCLS)),
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Figure 2. Vision–Language Distance (VLD) architecture. Egocentric observations and a goal (image and/or text) are encoded into tokens
using frozen backbones (DINOv2 for images, CLIP for text). Text tokens are projected into the DINOv2 embedding space so that both
modalities lie in the same space as the observation tokens. A Transformer decoder attends from observation queries to goal tokens, and the
CLS output is used by MLP heads to predict temporal distance and a confidence score.

where t̂ ≥ 0 is the predicted temporal distance and ĉ ∈ [0, 1]
is a confidence score. The confidence aligns naturally with
our Gaussian mixture NLL loss (Section 3.1.3), providing a
reliability signal for downstream policies.

3.1.3. Training Procedure
We frame distance prediction as a (self-)supervised regres-
sion problem. For each trajectory we sample observation
pairs oi and oj such that i ≤ j and the td = j − i is their
temporal distance, where td ≤ tdmax for a fixed tdmax,
forming the dataset of triplets {(oi, oj , j− i)}i,j . The train-
ing algorithm is described in detail in Appendix A.

Because exact distance prediction is inherently noisy and
often ambiguous (as discussed in Section 3.1.1), we train
the model to produce both a prediction t̂n and an associ-
ated confidence ĉn ∈ [0, 1]. Intuitively, the confidence al-
lows the model to downweight uncertain cases (e.g., long-
horizon pairs with little to no visual overlap) while still uti-
lizing more reliable near-goal predictions.

Concretely, we model the likelihood of the ground-truth
temporal distance tdn given the prediction t̂n as a in-
lier–outlier Gaussian mixture [30]: with probability ĉn,
the error is drawn from a tight “reliable” Gaussian with
variance σ2

R, and with probability 1 − ĉn, it comes from
a broader “outlier” Gaussian with variance σ2

O, where
σR ≪ σO. Then the training objective is the negative log-
likelihood (NLL) over a batch of N samples:

L = − 1

N

N∑
n=1

log

[
ĉn

1√
2π σR

exp
(
− (tdn−t̂n)

2

2σ2
R

)
+ (1− ĉn)

1√
2π σO

exp
(
− (tdn−t̂n)

2

2σ2
O

) ]
.

(1)

This inlier–outlier Gaussian mixture NLL formulation

has two benefits: (i) it encourages calibrated uncertainty es-
timates that can be propagated to downstream policies, and
(ii) it reduces the penalty for inherently ambiguous predic-
tions, preventing the model from overfitting to noisy super-
vision.

3.1.4. Training Data
To train our distance function, we combine three comple-
mentary data sources: (i) synthetic trajectories from simu-
lators, (ii) “in-the-wild” internet-scale videos, and (iii) em-
bodiment datasets collected on real robots. A detailed sum-
mary of the dataset and its collection is provided in Ap-
pendix B.

3.2. Navigation Policy
We formulate navigation as a variant of the point-goal nav-
igation task: the agent is placed in a 3D environment with
an unknown map and must reach a goal location specified
by its geometric distance from the agent’s current position.
During training, this distance-to-goal signal is provided di-
rectly by the simulator; at deployment, it is replaced by pre-
dictions from our learned VLD model. This setup enables
the RL agent to learn generalizable navigation behaviors in-
dependently of simulator photorealism, while grounding its
decision-making in a scalar signal that can also be inferred
from real-world images. The limitation of this formulation
is that the policy cannot directly rely on visual information
to infer its global position—rather, it must reason implicitly
about spatial structure through the distance signal alone.

3.2.1. Policy Network
The policy receives two types of inputs: (i) sensory infor-
mation, providing minimal obstacle awareness and internal
agent state, and (ii) the distance-to-goal and its confidence.
During training, the distance signal comes from the simu-
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lator with injected noise; at deployment, it is replaced by
VLD predictions (see Section 3.2.2 and Section 4.2).

Inputs are fed into an LSTM core that maintains tempo-
ral memory. The LSTM output is processed by two MLP
heads: a policy head that outputs navigation actions and
a value head used for PPO optimization [36]. The noise-
injected distance signal during training encourages robust-
ness and mimics the uncertainty patterns of the VLD model.

3.2.2. Noise Function
A key challenge in our framework is that the learned dis-
tance function is inherently noisy and ambiguous. Train-
ing a policy purely on perfect, noise-free distances from the
simulator would therefore produce brittle behaviors that fail
at deployment. To address this, we perturb the privileged
distance signal during RL training, so that the policy expe-
riences inputs with a noise structure resembling what it will
later encounter from the VLD predictor.

Our main noise injection approach is geometric overlap
noise. Since the simulator provides a geometric distance-to-
goal while the VLD predictor estimates temporal distance,
the two are only partially correlated. Moreover, the dom-
inant source of prediction error arises from the degree of
visual overlap between the agent’s view and the goal. Thus,
by conditioning perturbations on overlap features and learn-
ing to map geometric distances into temporally realistic er-
rors, we produce noise that more faithfully reflects the struc-
ture of prediction uncertainty encountered in practice.

To this end, we design a learned noise model based on
geometric overlap features: for each observation and goal
pair, we extract a 13-dimensional feature vector:
1. Projection success ratio (PSR). To quantify visual

overlap between the current and goal views, we define
the projection success ratio (PSR), which measures the
fraction of pixels in the goal image that can be geo-
metrically projected into the current view with depth-
consistent matches. A higher PSR indicates greater vi-
sual overlap (details in Appendix D).

2. Relative camera rotation. The relative rotation Rrel ∈
SO(3), flattened to 9 parameters [11].

3. Relative translation. The relative translation trel ∈ R3,
encoded with the symmetric logarithm

SymLog(x) = sign(x) log
(
1 + α|x|

)
, (2)

which compresses large displacements while preserving
directionality.
These features are passed to a lightweight MLP with two

output heads: one predicting a distribution over distance-
noise bins and the other over confidence-noise bins. Train-
ing is formulated as a classification problem, where labels
are derived from the VLD’s predicted distance and confi-
dence values on held-out image pairs, discretized into bins.
We optimize the model using cross-entropy loss.

During RL policy training, the trained geometric over-
lap noise MLP infers probability vectors p(td) ∈ RBd and
p(c) ∈ RBc over distance and confidence bins. A bin b is
first drawn via multinomial sampling, then the final value is
sampled from a Gaussian centered at the bin midpoint with
standard deviation proportional to the bin width:

ẑ ∼ N
(
lb+ub

2 , ub−lb
6

)
, (3)

where [lb, ub] is the bin interval and the σ = ub−lb
6 stan-

dard deviation ensures that the sampled point is within the
bin with ≈ 99.7% probability. This produces smooth, non-
discrete samples while respecting the predicted uncertainty.

Ultimately, the model outputs a noisy pair (d̂, ĉ) condi-
tioned on overlap and relative pose, thereby reproducing
structured error patterns of the VLD predictor: larger er-
rors and lower confidence when the goal is out of view or
behind the agent, and tighter, higher-confidence estimates
when visual alignment is strong.

We discuss an alternative formulation of distance noise,
along with additional design considerations, in Appendix K.

3.2.3. Reward Function
For policy training, we directly extend the Zero-Exploration
Reward (ZER) formulation [1] to explicitly encourage the
agent to orient toward the goal. At each step t, the agent’s
overlap with the goal is quantified by the projection suc-
cess ratio psrt ∈ [0, 1]. Let psrmax

t denote the maximum
overlap achievable at the current position if the agent were
rotated optimally, and let psrs be a success threshold. The
reward is then given as

rt = (dt−1 − dt) − γ (1− psrt)
+ 1[ dt < ds ∧ psrmax

t > psrs ]Rs,
(4)

where dt is the true geometric distance-to-goal at time t, γ
is a step penalty, ds is a success margin, and Rs is a success
bonus applied when the agent enters within ds of the goal.

4. Experiments
4.1. Distance Function Experiments
We design experiments to demonstrate that our distance
function provides a meaningful measure for navigation by
producing predictions that correlate with ground-truth dis-
tances. In particular, we focus on verifying that the pre-
dicted distances have the potential to serve as a reliable nav-
igation signal even in cases where there is no visual overlap
between the agent’s current observation and the goal image.

4.1.1. Baselines
We compare VLD against two representative families of
image-goal distance function approaches that differ in how
they estimate temporal distances.
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Table 1. Ordinal consistency (Kendall’s τ ) on Habitat datasets.

Model HM3D (↑) Gibson (↑)

20 50 100 20 50 100

ViNT 0.40 0.35 0.28 0.53 0.41 0.39
ViNT-Tuned 0.67 0.56 0.48 0.78 0.65 0.64
VIP 0.29 0.19 0.17 0.39 0.30 0.29
VIP-Nav 0.55 0.45 0.38 0.65 0.51 0.50
VIP-DINOv2 0.42 0.45 0.40 0.62 0.52 0.51

VLD (synthetic) 0.81 0.71 0.62 0.84 0.74 0.71
VLD (real-world) 0.10 0.07 0.07 0.12 0.10 0.09
VLD (all) 0.82 0.70 0.61 0.84 0.73 0.71

The first family is based on ViNT [40]. It provides a
strong baseline due to its training on diverse real-world
datasets and a comparable parameter count to our model
(∼31M). We evaluate both the publicly released pretrained
ViNT and a fine-tuned variant on our data (ViNT-Tuned).

The second family follows VIP [27]. The original VIP
model employs a ResNet-50 backbone [13] and was primar-
ily developed for manipulation tasks. For a fair comparison,
we evaluate the released VIP model, a retrained navigation-
oriented version (VIP-Nav), and a DINOv2-enhanced vari-
ant (VIP-DINOv2) where the ResNet encoder is replaced
with a frozen DINOv2 [32].

More details about the architecture and training setup of
the baseline models are available in Appendix E.

4.1.2. Dataset
For VLD training with the hyperparameters described in
Appendix F, we consider three configurations: (i) using
only synthetic Habitat data, (ii) using real-world trajecto-
ries from in-the-wild and embodiment datasets, and (iii)
combining all available sources. This setup enables us to
evaluate both the benefits of large-scale real-world diversity
and the robustness of models trained solely in simulation.
The distance functions are evaluated independently for each
dataset on held-out validation trajectories.

4.1.3. Ordinal Consistency Evaluation
We evaluate ordinal consistency using Kendall’s τ , as de-
scribed in Section 3.1.1. This metric measures whether the
predicted distances preserve the correct ordering of progress
toward the goal, independent of absolute values. In our
setup, trajectories are constructed such that the ground-truth
temporal distance to the goal strictly decreases by design;
thus, a perfect distance function would produce a monoton-
ically decreasing sequence of predicted distances.

To assess model performance under varying levels of
difficulty, we compute ordinal consistency at multiple tem-
poral horizons corresponding to different degrees of visual
overlap between the current view and the goal. Specifically,
we evaluate on clipped trajectory segments with maximum
start-to-goal distances of 20, 50, and 100 steps, as well as

on the 100–20 range where overlap is minimal or absent.
Shorter horizons (e.g., 0–20) capture settings with strong
field-of-view overlap, while longer or offset horizons (e.g.,
100–20) evaluate consistency when the goal lies outside the
agent’s visual field.

Results on Habitat Datasets. We first evaluate models
in synthetic Habitat environments. Goals correspond to the
final viewpoint of each trajectory. The ordinal consistency
(Kendall’s τ ) results for horizons of 20, 50, and 100 steps
are reported in Table 1.

VLD models trained on Habitat data—either alone or
combined with real-world data—substantially outperform
all baselines. In contrast, the model trained only on real-
world videos collapses to a near-constant output, effectively
predicting the midpoint of the temporal horizon and yield-
ing Kendall’s τ near zero. This failure reflects the unstruc-
tured nature of internet-scale walking trajectories, where
motion is not consistently directed toward a goal and of-
ten includes turns, pauses, and stochastic exploration. The
structured, goal-oriented trajectories in Habitat provide the
key supervisory signal necessary for learning meaningful
temporal distance relationships. All baselines fall consider-
ably short of VLD.

Results on Real-World Datasets. We next evaluate on
real-world datasets consisting of in-the-wild videos and em-
bodiment trajectories. We report results in Table 2.

The VLD model trained on both synthetic and real-
world data achieves the strongest results. Interestingly, the
synthetic-only model is consistently second-best, indicating
that structured simulator trajectories generalize well even to
real-world outdoor footage.

Text-Goal Results. We evaluate language-conditioned
distance prediction on HM3D by bootstrapping text de-
scriptions from object-goal annotations (Appendix B). Re-
sults are reported in Table 3. When using image goals,
VLD achieves the strongest performance, and adding text
alongside images leads to nearly identical results. In prac-
tice, the model naturally prioritizes the visual signal when
available, and the additional text conditioning neither helps

Table 2. Ordinal consistency (Kendall’s τ ) on real-world trajecto-
ries. VLD (all) generalizes best across bothW settings.

Model In-the-wild (↑) Embodiment (↑)

50 100 50 100

ViNT 0.35 0.25 0.41 0.32
ViNT-Tuned 0.40 0.29 0.48 0.37
VIP 0.28 0.20 0.43 0.33
VIP-Nav 0.32 0.23 0.46 0.39
VIP-DINOv2 0.42 0.30 0.52 0.44

VLD (synthetic) 0.44 0.31 0.58 0.48
VLD (real-world) 0.23 0.18 0.16 0.14
VLD (all) 0.69 0.61 0.73 0.63
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(a) Image-goal Habitat example (VLD, ViNT-Tuned, VIP-Nav). As the agent progresses, all models produce declining distance estimates, but
VLD tracks the ground-truth trend more closely, achieving the highest Kendall’s τ score. Around frame 50, visual cues from the goal image (the
table area) enter the field of view, leading to an increase in VLD confidence and a drop in its predicted distance. Baselines either react later or exhibit
weaker monotonic alignment, illustrating VLD’s stronger ordinal consistency.

(b) Real-world trajectory example (VLD: text, image, multimodal). Similarly to Figure 3a, around frame 60, the person circled in the goal image
becomes (barely) visible in the observation (see frames 61, 70, 79, 88). Despite the minimal visual footprint, VLD detects this overlap, producing
a sharp confidence increase and a corresponding drop in predicted distance. This highlights VLD’s sensitivity to subtle goal-relevant cues and its
ability to express uncertainty meaningfully compared to baselines.

Figure 3. Ordinal consistency analysis on image-goal examples. For each trajectory, models compute distances independently at every
time step using the last frame as the goal. Top rows: normalized distance curves with associated Kendall’s τ values (left), VLD confidence
evolution (middle), and the goal image or goal text (right). Bottom rows: the sequence of agent observations along the trajectory. Across
both examples, VLD exhibits strong monotonic alignment with ground truth and meaningful confidence behavior, while baselines either
drift or fail to reflect appearance-based changes as reliably.

nor harms performance in a meaningful way. When us-
ing text-only goals, performance drops noticeably, which is
expected since natural language descriptions are inherently
less precise than images in specifying spatial targets, and
our text labels are automatically generated and therefore
coarse. However, the text-only VLD model still achieves
ordinal consistency well above random and remains com-
parable to the image-based baselines even after those base-
lines are fine-tuned. This suggests that VLD is able to form

semantically grounded navigation distances from text alone,
despite the weaker supervision signal.

Long-Horizon No-Overlap Consistency. We addi-
tionally evaluate ordinal consistency in settings where the
agent’s current observation and the goal image have little
to no visual overlap. To do so, we compute Kendall’s τ
over clipped trajectory segments in the 50–20 and 100–20
ranges, where the agent is still far from the goal and di-
rect correspondence is weak. On HM3D, VLD achieves
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Figure 4. Ordinal consistency analysis for text-goal Habitat example (VLD: text, image, multimodal). VLD computes distances inde-
pendently at every time step using the last frame or text prompt as the goal. Top row: normalized distance predictions with corresponding
Kendall’s τ scores (left), VLD confidence curve (middle), and the goal image (right). Bottom row: the sequence of observations along
the trajectory. The automatically bootstrapped (Appendix B) text description (“plant on the wall above the bed in the room”) provides only
partial and even occasionally ambiguous guidance. Nonetheless, text-only VLD predictions follow the global decreasing trend and remain
broadly aligned with the image-goal variants, albeit with higher noise—as expected for semantic-only supervision. As the agent approaches
the room containing the goal, confidence increases and predicted distances fall smoothly, though not exactly to zero—an expected outcome
for semantic (non-pixel-aligned) goal specifications. The multimodal version closely tracks the image-only-goal predictions, demonstrat-
ing that linguistic cues can reinforce—but do not override—visual distance estimation.

Table 3. Ordinal consistency (Kendall’s τ ) on text-specified goals
(HM3D). Combining image and text recovers near image-only
performance.

Model 20 (↑) 50 (↑) 100 (↑)

ViNT 0.40 0.35 0.28
ViNT-Tuned 0.67 0.56 0.48
VIP 0.29 0.19 0.17
VIP-Nav 0.55 0.45 0.38
VIP-DINOv2 0.42 0.45 0.40

VLD (image) 0.81 0.70 0.61
VLD (text) 0.49 0.49 0.44
VLD (image+text) 0.81 0.71 0.62

τ = 0.40 at 50–20 and τ = 0.35 at 100–20 (compared to
τ = 0.71 and τ = 0.62 under full-horizon evaluation), indi-
cating that ordinal structure is largely preserved even with-
out overlapping views. On in-the-wild trajectories, VLD
reaches τ = 0.42 and τ = 0.45 for 50–20 and 100–20, re-
spectively, while on embodiment data it obtains τ = 0.52
and τ = 0.46. These results show that VLD continues to
provide a meaningful navigation signal even when the goal
is visually out of view, demonstrating robustness to long-
horizon perception gaps.

Additional ordinal consistency experiments, including
ablations of the VLD setup, are provided in Appendix G.

Qualitative results. Across all datasets, we observe
a consistent pattern: ordinal consistency is highly reliable
whenever even a small amount of visual overlap exists be-

tween the current observation and the goal. This holds
across both Habitat trajectories and real-world sequences
(see Figures 3 and 4, with additional examples in Ap-
pendix I). The image-goal examples (Figure 3a and Fig-
ure 3b) illustrate how VLD closely follows the ground-truth
monotonic trend and reacts promptly when goal-relevant
cues enter the field of view, outperforming ViNT-Tuned and
VIP-Nav. Similarly, the text-goal example (Figure 4) shows
that text-only predictions remain coherent—albeit nois-
ier—and that multimodal conditioning effectively aligns
with image-based performance.

In scenarios where the goal lies completely outside the
field of view, confidence scores drop markedly and the pre-
dicted distances become noisier, reflecting true perceptual
uncertainty rather than model failure. This motivates ana-
lyzing whether VLD still provides a meaningful navigation
signal even when no visual overlap is present. To that end,
we introduce a distance accuracy metric that compares rel-
ative distances between pairs of observations without goal
image visual overlap. Full details and results are provided
in Appendix J.

4.2. Application: Using VLD for Navigation Policies

The reinforcement learning policies are trained and eval-
uated in the Gibson environment [47]. Gibson is disjoint
from HM3D, meaning that the navigation policy is de-
ployed in a fully unseen environment.

We train point-goal navigation policies using structured
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Table 4. Navigation performance on Gibson (validation).
“Swap” indicates replacing (noised) ground-truth distance with
VLD/ViNT/VIP at deployment. We report success rate (SR↑) and
success weighted by path length (SPL↑).

Policy Configuration SR (↑) SPL (↑)

Privileged Training (GT Distance)
GT Distance (no noise) 0.9577 0.6103
GeoNoise 0.9091 0.5547
GeoNoise + Confidence 0.8994 0.5809

Trained Directly on VLD
Policy trained end-to-end on VLD 0.5664 0.4227

Swap: Replace Distance with VLD/ViNT/VIP at Deployment
VLD + (GeoNoise) 0.7314 0.3995
VLD + (GeoNoise + Confidence) 0.6821 0.3860
ViNT-Tuned + (GeoNoise) 0.6046 0.2555
VIP-Nav + (GeoNoise) 0.2787 0.1148

External Image-Based Nav Baselines (reported)
OVRL-V2 [49] 0.820 0.587

geometric-overlap noise (Section 3.2.2). The policy ad-
ditionally receives lightweight obstacle-awareness features
(via a frozen pretrained EfficientNet-B0 encoder [42]), GPS
displacement, and proprioception. Notably, many success-
ful sim-to-real RL pipelines rely on training policies purely
from geometric signals [51]; we follow a more Habitat-
friendly setup here for simplicity, but this approach can be
readily adapted to geometry-only exteroception. We also
evaluate a policy trained end-to-end directly on VLD pre-
dictions. Results are summarized in Table 4, with noise
function ablations discussed in Appendix K, and trajectory
visualizations and analyses provided in Appendix L.

Quantitative Results. The privileged policy trained
with ground-truth distance nearly solves the task, confirm-
ing that accurate distance-to-goal is a strong navigation sig-
nal. Training a policy directly on VLD predictions achieves
moderate success but is significantly less efficient, requiring
way more computational resources and time to converge.

The key result is that policies trained on noisy ground-
truth distances transfer effectively to VLD at deployment:
simply swapping the distance signal yields a success rate of
0.73, a ∼17% relative drop from respective privileged per-
formance. This demonstrates that geometric-overlap noise
induces robustness to the characteristic error patterns of
VLD, enabling strong zero-shot replacement.

Interestingly, the confidence-aware policy performs
slightly worse. We hypothesize that this is due to com-
pounding uncertainty: the policy encounters both (i) noise
in the distance predictions and (ii) noise in the associ-
ated confidence values. This suggests that confidence is
valuable during training, but may compound uncertainty
in decision-making once the distance estimates become
model-predicted rather than simulator-provided.

In addition, Table 4 compares how different distance pre-
dictors perform when swapped into the same navigation
policy at deployment. Although the noise model was cal-
ibrated to VLD, the policy can also operate with alterna-
tive distance functions such as ViNT-Tuned or VIP-Nav,
allowing us to assess their suitability for control directly.
The trend is consistent: VLD provides a more informa-
tive and stable signal, leading to the highest success rate
and SPL among all swapped variants. ViNT-Tuned is par-
tially compatible—highlighting the robustness induced by
geometric-overlap noise—but still underperforms VLD by
a substantial margin, while VIP-Nav degrades navigation
sharply. These outcomes mirror the ranking observed in the
distance-prediction benchmarks: predictors with higher or-
dinal consistency and more reliable distance estimates yield
stronger downstream navigation behavior.

Finally, we compare our approach against leading Ima-
geNav systems such as OVRL-V2 [49]. Unlike OVRL-V2,
which learns policies directly from full image observations,
our approach relies on a single scalar goal signal comple-
mented by lightweight perception. Despite this substantial
difference in supervision, the swapped policy achieves com-
petitive navigation performance, with only ∼9% drop in
SR. While we observe a decrease of ∼20% in SPL, this
is expected since the robot needs to move around more to
determine the direction in which the distance is decreasing.

5. Conclusion
Our work takes a step toward bridging the gap between
large-scale perception models and embodied action. While
the information exchange between the VLD and RL pol-
icy is limited as VLD reduces rich visual input to a sin-
gle distance value—potentially overlooking subtle semantic
cues—the proposed VLD framework delegates the respon-
sibility of safe local navigation to the RL policy, while ab-
stracting high-level object goals and text conditioning into
a scalable learning objective. With sufficiently large-scale
pretraining, such models may eventually capture the sub-
tleties required for robust goal understanding, turning this
seemingly minimal signal into a useful foundation. While
we ultimately do not argue for abstracting visual naviga-
tion as a single scalar, we showcase that abstracting the task
description into a single scalar — or a history of scalar val-
ues — for the policy leads to the emergence of interesting
search and navigation strategies. Furthermore, although we
demonstrated transfer to a different environment in simu-
lation, we have not yet validated its effectiveness in real-
world robotic applications. We hypothesize that the sim-
to-real gap may be smaller in this case because the visual
domain discrepancies only affect a scalar value. However,
as evident from our simulation results, the limited informa-
tion will result in suboptimal navigation behavior compared
to a policy that has access to the full visual cues.
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Appendix

A. Distance Function Training
The training, summarized in Algorithm 1, is framed as a
self-supervised regression problem with both positive and
negative triplets. The positive examples (oi, oj , td = j − i)
are formed by sampling oi and oj along the same trajec-
tory such that i ≤ j and the td = j − i is their temporal
distance, where td ≤ tdmax. For hard negatives, follow-
ing ViNG’s negative mining strategy [37], we pair obser-
vations from different trajectories and assign the maximum
distance tdmax. This exposes the model to cross-trajectory
and cross-scene mismatches, thereby improving the robust-
ness of the learned distance function in recognizing when a
goal seems off or is very far away.

We further highlight the role of negative mining through
the example shown in Figure 5. When computing the dis-
tance between two observations—one taken in a standard
indoor kitchen and the other onboard a spaceship—we ex-
pect the model to assign a value close to tdmax, reflecting
that these views are entirely unrelated. In practice, com-
paring models trained with and without negative mining
shows a sharp contrast. The model trained with negative
mining predicts a distance of approximately 102, slightly
exceeding its tdmax = 100, which is desirable behavior as
it confidently signals that the model believes that the two
images are very far apart. In contrast, the model trained
without negative mining predicts a distance of only 50, es-
sentially the midpoint of the range. Moreover, the negative-
mining-trained model produces a confidence score close to
1.0, while the model without negative mining yields only
0.13, confirming that negative mining is essential for en-
abling the distance function to decisively recognize mis-
matched or out-of-distribution goals.

B. Dataset Collection
Training data for the distance function is collected from
three kinds of sources: (i) synthetic trajectories from simu-

(a) Agent’s Observation
from a Kitchen

(b) Image from a
Spaceship

Figure 5. Negative mining teaches the model to separate unre-
lated scenes. Given two observations from completely different
environments (left: kitchen; right: spaceship), the desired behav-
ior is to output a distance close to tdmax, indicating that the im-
ages cannot correspond to nearby states on any trajectory. Only
the model trained with negative mining learns this behavior, pre-
dicting a high distance with high confidence; the model trained
without it collapses toward an uncertain mid-range prediction.

Algorithm 1 Distance function training

Require: Trajectories {τ (k) =

(o
(k)
1 , a

(k)
1 , o

(k)
2 , a

(k)
2 , . . . )}Kk=1, max horizon tdmax,

negative sampling probability pneg, parametrized
distance model Tθ(o, g), loss function L

1: Construct positives: D+ ← {(o(k)i , o
(k)
j , td = j −

i) | 1 ≤ i ≤ j, , j − i ≤ tdmaxk ∈ [1..K]}
2: Construct negatives: D− ← {(o(k)i , o

(ℓ)
j , td =

tdmax) | k ̸= ℓ}
3: Initialize distance model Tθ(o, g)→ (t̂, ĉ)

4: while not converged do
5: if Uniform(0, 1) < pneg then ▷ negative step
6: Sample mini-batch B ∼ D−
7: else ▷ positive step
8: Sample mini-batch B ∼ D+

9: end if
10: Compute predictions {(t̂n, ĉn)} ←
{Tθ(on, gn) | (on, gn, tdn) ∈ B}

11: Compute loss: L(θ) ←
LossFunction({(t̂n, ĉn, tdn)}n∈B)

12: Update parameters: θ ← θ − η∇θL(θ)
13: end while
14: return trained distance function Tθ

lators, (ii) “in-the-wild” internet-scale videos, and (iii) em-
bodiment datasets collected on real robots. A summary is
provided in Table 5.

Since these datasets span different embodiments and
capture rates, the average velocity of agents varies consid-
erably. To normalize the effective temporal spacing, we ad-
just the frame rate so that the distance covered between two
consecutive frames is approximately 0.25m. This matches
the step size of the Habitat agent and ensures geometric
consistency across sources. When velocity metadata is un-
available, we estimate it using a simple visual odometry
method [31].

The collection procedure for each data type:

1. Synthetic data. We use Habitat [35] with the HM3D
scenes [34], which provide well-structured trajectories
together with specific goal object annotations and corre-
sponding image goals [20]. We exploit this structure by
generating trajectories with the ShortestPathFollower.
To make goal images more meaningful, we extend the
follower: instead of stopping at the exact point-goal lo-
cation, the agent continues until the goal object is visi-
ble and then rotates to orient toward it before issuing the
stop action. This ensures that the final goal view clearly
depicts the object of interest.
To further enrich this data, we bootstrap text goals.
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Table 5. Datasets used for training and validating the temporal
distance function. We report average velocity, total hours, dataset
type, and the frame rate used for generating temporal distance su-
pervision.

Dataset Avg. Velocity Total Hrs Type
HM3D 2.5 m/s 1150h Synthetic
YouTube 0.5 m/s 1720h In-the-wild
Ego4D 0.5–1.5 m/s 50h In-the-wild
SCAND 1.5–2 m/s 9h Embodiment
Grand Tour 1 m/s 5h Embodiment
CityWalker 1.5 m/s 15h Embodiment

Total 2949h

HM3D provides object labels at goal viewpoints; us-
ing these, we prompt BLIP [23] to generate a goal de-
scription given the image of the goal and a simple tem-
plate (e.g., “the {goal object} is”). This procedure yields
475,562 trajectories from 145 training scenes and 2,271
trajectories from 35 validation scenes (after filtering out
very short routes). We additionally include 994 valida-
tion trajectories from Gibson [47] as a fully held-out test
dataset.

2. “In-the-wild” videos. Following CityWalker [26], we
curate 1,720 hours of YouTube videos of humans walk-
ing across different outdoor settings, seasons, and times
of day. Sources of these videos are listed in Sec-
tion C. We also add 50 hours of diverse sequences from
Ego4D [12], filtered to scenarios such as “street walk-
ing”, “indoor navigation”, and “jogging/cycling”. No
further preprocessing is applied beyond adjusting the
frame rate. For both sources, we hold out roughly 10%
of trajectories for validation.

3. Embodiment datasets. We include several smaller but
very high-quality datasets collected on physical robots.
SCAND [17] provides trajectories from Spot and Jackal
across indoor and outdoor settings. The GrandTour [9]
spans more than 49 environments, including indoor,
urban, natural, and mixed settings collected with a
quadrupedal robot. We also incorporate CityWalker’s
own robot-collected subset [26]. These datasets are lim-
ited in scale but highly diverse, and we upsample them
during training. Again, around 10% of trajectories are
reserved for validation.

C. Walking Data Video Sources
For the in-the-wild data component, we follow the City-
Walker dataset [26] and use the same YouTube walking
video sources. The playlists are publicly available and can
be accessed at:
• Day Walking Tours

• Sunset Walking Tours
• Rainy Walking Tours
• Night City Walking Tours
• Snow Days

These playlists comprise almost 2000 hours of human
walking footage captured across diverse urban and natural
environments, recorded at various times of day and under
varying weather conditions. They serve as the source for
our internet-scale “in-the-wild” trajectories.

D. Projection Success Ratio (PSR)

The projection success ratio (PSR) provides a geometric
proxy for visual overlap between a goal view and the agent’s
current egocentric view. It is defined as the fraction of valid
goal pixels that project consistently into the current depth
image:

PSR =
1

N

N∑
p=1

1
( ∣∣Zcurr-pred

p − Zcurr
π(p)

∣∣ < τ
)
, (5)

where N is the number of valid depth pixels in the goal
image, Zcurr-pred

p is the predicted depth of pixel p after un-
projection from the goal frame and transformation into the
current camera frame, π(p) is its projection into the current
image plane using calibrated intrinsics, and Zcurr

π(p) is the ob-
served depth at the corresponding pixel in the current view.
The threshold τ controls the tolerance for depth consistency.

Figure 6 illustrates PSR in practice. With no overlap,
nearly all projected pixels fail to match (yielding PSR≈ 0).
With partial overlap, a subset of projections are consistent,
resulting in an intermediate PSR. With full overlap, most
goal pixels successfully project, producing a high PSR≈ 1.

E. Alternative Distance Function Architec-
tures

To test the robustness of our design choices, we evalu-
ated several alternative architectures for distance prediction,
summarized in Figures 8 and 9. These span both encoder-
based and embedding-distance approaches.

(i) ViNT-style baseline. We directly adopt the ViNT ar-
chitecture [40], where observation and goal tokens are con-
catenated and processed jointly by a Transformer encoder
(see Figure 7). In contrast to our use of frozen internet-scale
encoders (DINOv2 and CLIP), ViNT relies on Efficient-
Net backbones [42] that are trained from scratch. For con-
sistency with our setting, we remove the action-prediction
head and retain only the temporal distance output. We eval-
uate both the released ViNT model (pre-trained on their cu-
rated datasets) and variants trained on our data. This serves
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Current View Projected Goal Points Goal Image Environment Map

(a) No overlap. The goal view is occluded (e.g., by a wall), yielding a near-zero projection success ratio.

Current View Projected Goal Points Goal Image Environment Map

(b) Partial overlap. A subset of projected points land consistently, producing an intermediate projection success ratio.

Current View Projected Goal Points Goal Image Environment Map

(c) Full overlap. Most projected points are consistent, resulting in a high projection success ratio.

Figure 6. Projection success ratio (PSR) visualization. Each row shows (left) the current view, (second from the left) the current view
with projected goal points, and (second from the right) the goal image (right). In the middle panel, the legend reports: PSR r, the number of
successfully matched points (green) and failed matches (red), and the geometric-overlap noise model’s predicted distance d̂ and confidence
ĉ.

as a natural baseline, since ViNT also predicts temporal dis-
tance as an auxiliary signal, though its backbone and train-
ing setup differ substantially from ours.

(ii) Encoder over joint tokens. As shown in Figure 8, we
experiment with an encoder-only Transformer applied to the
concatenation of observation and goal embeddings. Unlike
our decoder-based design, which retains the full token se-
quence from DINOv2 and CLIP, here each image (or text
sequence) is reduced to a single pooled embedding from its
backbone. These embeddings are then concatenated, aug-
mented with positional and modality encodings, and pro-
cessed symmetrically by a Transformer encoder. The out-
put tokens are then averaged, and the resulting embedding is

used to regress distance and confidence. This design allows
us to isolate the effect of our decoder-based query–memory
formulation versus pooled joint encoding.

(iii) VIP-style embedding distances. Inspired by
VIP [27], we also test architectures where observation
and goal images are encoded independently, and temporal
distance is predicted as a function of their embeddings
(Figure 9). Concretely, we experiment with simple ℓ2
norms as well as learned functions such as a linear layer
with ReLU. Since the prediction head in this setup is
relatively weak and lacks the capacity of a decoder with
cross-attention, the choice of image encoder becomes
especially critical. We therefore evaluate both frozen and
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Figure 7. Adapted ViNT Model Architecture [40]. We mod-
ify the original ViNT model by removing the action prediction
head and retaining only the temporal distance prediction branch.
The model encodes past observations and goal images with two
EfficientNet-B0 encoders, fuses the resulting features into a se-
quence of tokens, and processes them with a Transformer to pre-
dict the (temporal) distance to the goal.
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Figure 8. Encoder-based alternative. Observation and goal to-
kens are concatenated and processed jointly with a Transformer
encoder, following the ViNT design but using frozen DINOv2 and
CLIP encoders.

trainable encoders, ranging from lightweight CNNs to
DINOv2. In practice, we restrict these baselines to image
goals, as they already struggle to model distances reliably,
and extending them to text proved unfeasible.

(iv) Quasimetric neural networks. Finally, we consider
using the distance head with a quasimetric neural network
(QNN) [43], which enforces quasimetric constraints in the
embedding space by design. This guarantees desirable geo-
metric properties such as asymmetry and triangle inequality,
aligning with our QRL-inspired objective (Section H). We
embed this into the VIP-style architecture of Figure 9.

F. VLD Architecture and Training Setup
Tables 6 and 7 summarize the hyperparameters of our
Single-View VLD model and training setup. We set the
maximum temporal distance to tdmax = 100 steps, corre-
sponding to approximately 25 meters in Habitat, and train
using the inlier–outlier Gaussian mixture NLL loss, with the
reliable and outlier variances fixed at σ2

R = 4 and σ2
O = 40,

Temporal Distance

Image
Encoder

Image Goal
Token

Image
Encoder

Observation
Token

Distance
Function

Image Goal

Image Observation

MLP Projector

MLP Projector

Figure 9. VIP-style alternatives. Observations and goals are en-
coded separately via some image encoder that can either be frozen
or trainable, and distance is computed directly in the embedding
space (via ℓ2, linear, or quasimetric neural networks).

Table 6. Hyperparameters for the Single-View VLD model.

VLD Model
Total # Parameters 97M
Trainable # Parameters 11M
Image Encoder DINOv2-Small
Image Input Res. 224× 224
Image Token Dimension 384
Text Encoder CLIPText (ViT-B/32)
Max Text Sequence Length 64
Text Token Dimension 512
Attn. Hidden Dim. 384
# Decoder Layers 4
# Attention Heads 8
Activation Function GELU

respectively.
Although the model has a total of 97M parameters, only

11M are trainable. The remainder comes from the frozen vi-
sion encoder (DINOv2-Small, ∼22M parameters) and the
text encoder (CLIPText, ∼64M parameters). This means
that for image-goal distance prediction, the model effec-
tively relies on only ∼33M parameters in total, making
it directly comparable in scale to existing baselines such
ViNT [40] and VIP [27].

The Multi-View variant differs only in that it includes
a temporal pooling module consisting of a single self-
attention layer across T = 5 past frames (Figure 10), which
adds roughly 2M trainable parameters. Unless otherwise
stated, all experiments reported under “VLD” refer to the
Single-View variant as our default comparison model.

G. Distance Function Ablations

Beyond the experiments with training data presented in Sec-
tion 4.1.3 in the main paper body, which showed that VLD
benefits from data scaling laws, we perform additional ab-
lations to examine two key design choices: (i) the impact
of using multi-view versus single-view inputs, and (ii) the
effect of different learning objectives.
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Table 7. Training setup for the Single-View VLD model.

Training
# Steps 2M
Batch Size 64
Learning Rate 5× 10−5

Optimizer AdamW
LR Schedule Cosine
Warmup Steps 10K
Max temporal dist. (tdmax) 100
Neg. mining prob. (pneg) 0.05
Conf. “reliable” var. (σ2

R) 4
Conf. “outlier” var. (σ2

O) 40
Compute Resources 4× RTX 3090
Training Walltime 120 h

Table 8. Single-view vs. multi-view inputs. Ordinal consis-
tency (Kendall’s τ , ↑ higher is better) of VLD models on Habitat
datasets. We report results at 20, 50, and 100-step horizons.

Model HM3D (↑) Gibson (↑)

20 50 100 20 50 100

VLD (single) 0.82 0.70 0.62 0.84 0.73 0.71
VLD (multi) 0.82 0.71 0.63 0.86 0.75 0.73

G.1. Multi-view inputs
Drawing inspiration from ViNT [40], which leverages mul-
tiple past frames for improved spatial reasoning, we extend
our VLD architecture to support multi-view inputs, shown
in Figure 10. The model independently encodes a sequence
of recent observations using DINOv2, applies self-attention
across temporal tokens, and averages the resulting represen-
tations before decoding them into the final scalar distance
prediction.

Results on Habitat datasets. Table 8 compares
single-view and multi-view VLD models. The multi-view
variant achieves slightly higher ordinal consistency across
all horizons and both Habitat datasets. However, the im-
provements are relatively small compared to the additional
computational cost, suggesting that temporal context offers
modest robustness gains while the single-view design re-
mains a more efficient choice for most downstream settings.

G.2. Learning objectives
We further compare our Gaussian mixture negative log-
likelihood (NLL) objective against several alternatives: (i)
mean squared error (MSE), (ii) the implicit time-contrastive
loss used in VIP [27], and (iii) the QRL loss [44]. Full for-
mulations are provided in Appendix H.

Results on Habitat datasets. Table 9 summarizes the
results. The Gaussian mixture NLL outperforms all alter-
natives, demonstrating that explicit confidence modeling
helps the network down-weight ambiguous examples and

Table 9. Comparison of learning objectives. Ordinal consistency
(Kendall’s τ , ↑ higher is better) of VLD models trained with dif-
ferent objectives on Habitat datasets. Results shown for 20, 50,
and 100-step horizons.

Objective HM3D (↑) Gibson (↑)

20 50 100 20 50 100

VLD (NLL) 0.82 0.70 0.61 0.84 0.73 0.71
VLD (MSE) 0.71 0.67 0.61 0.78 0.70 0.68
VLD (QRL) 0.17 0.20 0.16 0.06 0.07 0.07
VLD (VIP) 0.73 0.53 0.43 0.79 0.59 0.56

focus on reliable pairs. In contrast, QRL exhibits unsta-
ble behavior—tending to saturate and under-predict large
distances. These results confirm that our Gaussian mixture
NLL provides the most stable and robust supervision signal
for learning spatially consistent distance functions.

H. Training objectives

Although our main experiments rely on the Gaussian mix-
ture NLL, we also experimented with alternative objectives
that allow for self-supervised training and are conceptually
attractive because they link the temporal distance function
more directly to (i) reward learning from large-scale video
(VIP) [27] and (ii) geometric consistency of value functions
(QRL) [44].

As a baseline, following ViNG and ViNT, we first con-
sidered the simplest formulation: minimizing mean squared
error (MSE) between predicted and ground-truth temporal
distances [37, 40]. This approach is straightforward and
often surprisingly effective, but it does not explicitly en-
courage the distance function to acquire useful geometric
or representational structure. We therefore explored objec-
tives designed specifically for temporal distance learning.

Value-Implicit Pretraining (VIP). VIP [27] was intro-
duced as a way to learn temporal distance functions from
large-scale human video by framing representation learning
as an implicit goal-conditioned RL problem. Rather than
regressing absolute distances, VIP trains a visual encoder
such that the distance to the goal is reflected in the simi-
larity of embeddings. Concretely, the learning objective is
designed such that initial and goal frames are pulled closer
together in embedding space, while intermediate frames are
repelled through a temporal-difference style objective (see
Algorithm 2). This produces embeddings that are smooth
over time and encode a notion of goal progress.

The appeal of VIP in our context is that it provides a tem-
porally consistent signal that does not depend on explicit
action labels, aligning well with our emphasis on large-
scale video pretraining. However, it is worth noting that
VIP has been predominantly evaluated in manipulation do-
mains, where image overlap between successive frames is
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Figure 10. Multiview Vision–Language Distance (VLD) architecture. Similar to the single-view variant (Figure 2), but processes a
short temporal window of past views. Each frame is encoded with DINOv2, followed by self-attention across temporal tokens before
aggregation and decoding.

high and the visual signal remains relatively consistent. In
contrast, navigation often involves long horizons with little
or no visual overlap, so we wished to test whether VIP’s
benefits transfer to this more challenging setting.

Quasimetric RL (QRL). Inspired by Quasimetric RL
(QRL) [44], we also considered training the distance func-
tion to satisfy quasimetric properties. A quasimetric is
a generalization of a metric that allows asymmetry (i.e.,
d(x, y) ̸= d(y, x)) while still respecting the triangle in-
equality. QRL shows that in multi-goal RL, the opti-
mal value function is always a quasimetric, making these
geometric constraints both natural and theoretically well-
founded.

Formally, let dθ(o, g) ∈ [0, Dmax] denote the predicted
temporal distance from observation o to goal g. The QRL
objective optimizes a Lagrangian that (i) spreads random
pairs apart up to a margin Dmax and (ii) enforces local one-
step consistency on consecutive frames, without requiring
any action labels (self-supervised learning objective):

Algorithm 2 Value-Implicit Pretraining (VIP) [27]

Require: Offline videos D = {(oi1, . . . , oihi
)}Ni=1, visual

encoder ϕ
1: for number of training iterations do
2: Sample sub-trajectories {oit, . . . , oik, oik+1, . . . , o

i
T }

from D
3: Compute loss:

L(ϕ) = 1

B

B∑
i=1

∥ϕ(oit)− ϕ(oiT )∥22

+ log
1

B

B∑
i=1

exp
(
∥ϕ(oik)− ϕ(oiT )∥2

− γ∥ϕ(oik+1)− ϕ(oiT )∥2
)

4: Update ϕ using SGD: ϕ← ϕ− αϕ∇L(ϕ)s
5: end for

min
θ

max
λ≥0

Eo∼pstate, g∼pgoal

[
ψ
(
Dmax − dθ(o, g)

) ]︸ ︷︷ ︸
global spreading

+ λ

(
E(o,o′)∼ptrans

[(
relu(dθ(o, o

′)− c)
)2]︸ ︷︷ ︸

local one-step constraint

−ε2
)
.

(6)
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where ψ(x) = softplus(x), c is the per-step cost (equal
to the temporal distance between o and o′), and ε > 0
is a slack tolerance. In practice, we parameterize λ =
softplus(ρ), clamp it to a maximum value (to prevent de-
generate solutions where the model becomes overly conser-
vative), and apply a gradient-reversal trick on ρ to imple-
ment the maxλ≥0 update.

The global spreading term encourages random (o, g)
pairs to lie near the maximum marginDmax, ensuring broad
separation of states. The local constraint enforces that
the predicted distance between neighboring observations1

does not exceed the known step cost c, implemented via a
squared hinge penalty that only activates when dθ(o, o′)>c.

Intuitively, this formulation drives the model to be-
have like a cost-to-go function: distances accumulate along
paths, preserve local step costs, and cannot “shortcut”
around the triangle inequality. Unlike explicit regression
to ground-truth temporal distances, the QRL objective in-
directly shapes the function through geometric constraints
and value consistency, potentially yielding a more robust
and transferable inductive structure for navigation.

I. Ordinal Consistency: Qualitative Results

Procedure. For a set of held-out trajectories, we indepen-
dently compute predicted distances at each frame for every
model under evaluation, using the last frame as the goal im-
age (and an optionally bootstrapped text prompt). For each
trajectory, we form a time series of normalized distances per
model and compute Kendall’s τ against ground-truth tem-
poral distance, yielding an ordinal consistency score per tra-
jectory. We additionally render qualitative plots overlaying
(i) predicted distance curves, (ii) ground-truth distance (nor-
malized), (iii) model confidence (when available), and (iv)
the goal image with optional bootstrapped text.

Interpreting the qualitative trajectories. These plots vi-
sualize the characteristic pattern that the predicted distance
steadily decreases as the agent progresses along the trajec-
tory, demonstrating that the learned distance function is sen-
sible and spatially consistent even when intermediate obser-
vations have limited or no visual overlap with the goal.

Habitat examples (Figure 11). Consider an example tra-
jectory from the shortest-path follower in Habitat. VLD
predictions closely follow the ground-truth linear decrease
in distance as the agent moves toward the goal, whereas
baselines (e.g., VIP-Nav or ViNT-Tuned) tend to drift more
often and fail to align with the true monotonic trend. When
the goal image enters the agent’s field of view, we observe

1o′ is sampled such that the distance between o and o′ is less than a set
margin, c ≤ dlocal.

spikes in confidence that coincide with sharp drops in pre-
dicted distance—precisely the expected behavior when the
model detects visual cues from the goal. This illustrates
that VLD not only encodes a reliable spatial prior but also
expresses uncertainty in a meaningful, interpretable way.

Real-world examples (Figures 12–13). Across diverse
in-the-wild scenes, we observe the same trend: predicted
distances decrease consistently with motion toward the
goal. Even when the goal is not directly visible, VLD
maintains ordinal consistency and produces smooth, inter-
pretable distance curves. Moments when the goal comes
into partial or full view correspond to spikes in confidence
and improved accuracy—mirroring the synthetic Habitat
setting and demonstrating strong sim-to-real coherence.

Text-goal examples (Figure 14). Finally, comparing
VLD under image-only, text-only, and multimodal goals re-
veals that all modalities exhibit the desired monotonic dis-
tance behavior, though the text-based variant is naturally
noisier. Even when the goal description perfectly matches
the observation, the predicted distance does not collapse
exactly to zero—an expected outcome, reflecting semantic
rather than pixel-level alignment. The multimodal model
tracks the image-goal variant closely, indicating that VLD
effectively integrates linguistic cues while preserving ordi-
nal structure.

Videos. In addition to the figures presented in this sec-
tion, we also include videos illustrating how the predicted
distance evolves. These visualizations provide richer con-
text by showing the agent’s current observation at each step
alongside the corresponding distance and confidence esti-
mates. The videos are available at the RL Distance
Navigation website.

J. Distance Accuracy Evaluation
To complement ordinal consistency and more directly as-
sess whether VLD provides a meaningful navigation signal
when the goal is visually out of view, we introduce a dis-
tance accuracy metric that compares relative distances be-
tween pairs of observations.

For each validation episode in HM3D, we sample 100
viewpoints located in the same room as the goal, while ex-
plicitly selecting viewpoints and orientations such that the
goal is not visible. We also sample 100 viewpoints located
outside that room (see Figure 15). Pairing these viewpoints
yields three comparison categories: (i) in-in (both view-
points in the goal room), (ii) out-in (one in the goal room,
one outside), and (iii) out-out (both outside the goal room).
For each category, we form all possible pairwise compar-
isons of temporal distance to the goal, and compute the frac-
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(a) Habitat Example 1

(b) Habitat Example 2

(c) Habitat Example 3

Figure 11. Habitat qualitative trajectories. Each top row shows a full trajectory plot (normalized predicted distances, GT distance, and
Kendall’s τ ) with all models overlaid (VLD, ViNT-Tuned, VIP-Nav). Each bottom row displays the sequence of observations along the
respective trajectory.
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(a) Real-world Example 1

(b) Real-world Example 2

(c) Real-world Example 3

Figure 12. Real-world qualitative trajectories (Part 1). The top rows of examples 1–3 show diverse “in-the-wild” and embodiment
scenes with normalized predicted distances and Kendall’s τ overlaid for all models (VLD, ViNT-Tuned, VIP-Nav). Each bottom row
displays the sequence of observations along the respective trajectory.
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(a) Real-world Example 4

(b) Real-world Example 5

(c) Real-world Example 6

Figure 13. Real-world qualitative trajectories (Part 2). The top rows of examples 4–6 further demonstrate that VLD maintains stable
ordinal behavior and decreasing predicted distances across visually diverse scenes. The bottom rows display the sequence of observations
along the respective trajectory. Together with Fig. 12, these illustrate consistent real-world generalization.
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(a) Text-goal Example 1 (VLD: image / text / multimodal)

(b) Text-goal Example 2 (VLD: image / text / multimodal)

(c) Text-goal Example 3 (VLD: image / text / multimodal)

Figure 14. HM3D text-goal qualitative trajectories. Each top row compares VLD with image-only, text-only, and multimodal (im-
age+text) conditioning. Each bottom row displays the sequence of observations along the respective trajectory.
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In-room Out-roomGoal Position and Orientation

Figure 15. Evaluating distance accuracy via spatial point sam-
pling. For each scene, we sample points both inside and outside
the room containing the goal (red). Following the criterion illus-
trated here, a point is considered in-room if there exists at least
one camera orientation at that location from which the goal image
exhibits non-zero visual overlap; otherwise, it is labeled out-room.
A notable side effect of this definition is that certain hallway loca-
tions in this figure, adjacent to the goal room, may also be clas-
sified as “in-room,” simply because the goal becomes marginally
visible from specific orientations at those positions.

tion of pairs for which VLD correctly predicts which view-
point is closer according to ground-truth geodesic distance.

Results are summarized in Table 10. Despite the ab-
sence of any direct visual overlap with the goal in all three
categories, VLD is able to identify the closer viewpoint
well above random, indicating that the model learns a spa-
tially coherent representation that provides meaningful di-
rectional guidance even when the goal is not visible. This
complements the long-horizon ordinal consistency results,
suggesting that VLD can gradually guide the agent toward
the goal over extended navigation, reducing uncertainty as
new observations are acquired.

We emphasize that this comparison is particularly chal-
lenging because of the geometry of indoor environments.
First, in most training videos, the agent intentionally moves
toward the final goal, meaning that upon entering a room,
they typically observe objects or structures that also appear
in the goal image. This creates a strong visual bias that is
not present in our evaluation setup. Second, the difficulty
is compounded by the geometry of indoor environments.
Even when the agent stands in the same room as the goal
image was captured, our evaluation forces it to consider ori-
entations where the goal is not visible. In many realistic
layouts, looking away from the goal often exposes features
of other connected rooms—sometimes more prominently

Table 10. Distance accuracy on HM3D validation scenes. The
metric reports the fraction of pairwise comparisons in which VLD
correctly identifies the closer viewpoint relative to the goal.

Category Accuracy (%, ↑)

In–In (both in goal room) 58.61
Out–In (one in goal room) 65.48
Out–Out (neither in goal room) 53.32

than the features of the room that actually contains the goal.
For example, a goal image taken in a living room may face
one direction, while the opposite orientation reveals an ad-
jacent kitchen rather than the living room itself. As a result,
the “same-room but opposite orientation” case can be sur-
prisingly ambiguous and visually misleading, making the
viewpoint-distance estimation task substantially harder than
it may appear.

K. Distance Noise Models Ablation
K.1. Ornstein-Uhlenbeck (OU) Distance Noise
Besides geometric overlap noise (Section 3.2.2), we exper-
iment with one more distance-noising method. Since recur-
rent policies (LSTMs, GRUs) can inherently filter out i.i.d.
Gaussian noise [5, 15], we do not use this most straightfor-
ward approach for applying noise. Instead, we introduce
temporally correlated noise based on Ornstein–Uhlenbeck
(OU) process, a type of “red noise” widely used in RL ex-
ploration [16, 24]. For each episode, we maintain a noise
state updated as:

ϵt = α ϵt−1 + σ ξt, ξt ∼ N (0, 1),

where α = 0.9 and σ = 0.1 are fixed hyperparameters con-
trolling correlation and magnitude. To mimic unpredictable
prediction failures, we additionally inject occasional spike
perturbations. Concretely, at each timestep we sample a
Bernoulli indicator bt ∈ {0, 1} with probability 0.05 of be-
ing active, and—conditioned on a spike occurring—a Gaus-
sian amplitude Ψt ∼ N (0, 4). The final noise is therefore

ϵ′t = ϵt + bt Ψt, bt ∼ Bernoulli(0.05), Ψt ∼ N (0, 4).

For more realistic behavior, the noise signal is applied to the
ground-truth geometric distance-to-goal (d) provided by the
simulator, conditioned as follows:

d̂ = max
(
0, d+ ϵ′t

)
, |ϵ′t| ≤ f(d) = exp

(√
d
)
− 1,

where f(d) decreases with d, reducing the admissible noise
magnitude near the goal. This prevents unrealistic negative
distances or excessively large errors when the agent is close
to the target.

Confidence values are derived directly from the noise
level, as by design, confidence should decrease when dis-
tance predictions are unreliable. In other words, the higher
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Figure 16. Four example trajectories illustrating the behavior of different noise models. Ground-truth (GT) temporal distance (a lin-
early decreasing signal) is shown in blue. VLD predictions are shown in orange. The GeoNoise—the learned geometric-overlap noise
model—produces the curves shown in green, while OU-noised distances are shown in red, obtained by applying an Ornstein–Uhlenbeck
process directly to the privileged ground-truth distances.

the noise magnitude applied to the ground truth, the lower
the confidence should be provided to the policy. We simu-
late this by first computing a proxy:

c′ = exp(−κ|ϵ′t|),

where κ is a scaling constant, and then perturbing c′ with an
independent OU process (ϕ) to avoid trivially revealing the
injected noise to the policy:

ĉ = clip(c′ + ϕt, 0, 1).

The final observation to the policy is thus the pair (d̂, ĉ) of
noisy geometric distance-to-goal and noisy confidence, pro-
ducing uncertainty patterns aligned with the behavior ex-
pected from the VLD model trained under the mixture NLL
objective.

K.2. Noise Ablation Results
Table 11 summarizes the comparison between Ornstein–
Uhlenbeck (OU) noise and our geometric-overlap noise

model. OU noise does not significantly hinder policy learn-
ing when used during RL training; in fact, its performance
remains close to the noise-free baseline. However, as illus-
trated in Figure 16, OU noise fails to capture the distribution
of the VLD predictions.

In contrast, the GeoNoise model not only mimics the
statistical distribution of VLD outputs more faithfully but
also induces policy behaviors that are crucial for down-
stream navigation driven by a vision(-language)-based dis-
tance function. Policies trained with GeoNoise learn to
perform periodic 360◦ scans at key locations—a behavior
aligned with the fact that VLD’s predicted distance can vary
dramatically with orientation, depending on whether goal
cues are visible. This enables the policy to actively seek
informative viewpoints and makes the VLD signal mean-
ingfully actionable during deployment (see Appendix L).

Practically, this difference is substantial: although both
noise models approximate the marginal variance of VLD,
only GeoNoise replicates the structural nature of VLD er-
rors. Policies trained under OU noise, therefore, lack the
exploration strategy needed to exploit VLD predictions, re-
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Table 11. Navigation performance on Gibson (validation). “Swap”
indicates replacing (noised) ground-truth distance with VLD at de-
ployment. We report success rate (SR↑) and success weighted by
path length (SPL↑).

Policy Configuration SR (↑) SPL (↑)

Privileged Training (GT Distance)
GT Distance (no noise) 0.9577 0.6103
GeoNoise 0.9091 0.5547
GeoNoise + Confidence 0.8994 0.5809
OU 0.9452 0.6459
OU + Confidence 0.9726 0.7209

Swap: Replace Distance with VLD at Deployment
VLD + (GeoNoise) 0.7314 0.3995
VLD + (GeoNoise + Confidence) 0.6821 0.3860
VLD + (OU) 0.1145 0.0400
VLD + (OU + Confidence) 0.4708 0.3150

sulting in poorer transfer. By contrast, policies trained with
GeoNoise transfer significantly better, and this benefit ex-
tends even to other distance functions such as ViNT (see
Section 4.2), indicating that the learned overlap-conditioned
noise serves as a generally useful proxy for image-based
distance prediction models.

L. Navigation Policy: Qualitative Results
We visualize representative rollouts from the navigation
policy when deployed with VLD. These examples illustrate
how the agent (i) explores previously unseen spaces, (ii)
uses VLD feedback to prioritize promising directions, (iii)
detects partial visual cues from the goal, and (iv) converges
to the target. We also show characteristic failure modes.

Videos. Additionally, full-trajectory visualizations are
provided at the RL Distance Navigation website,
showing how policies behave throughout entire rollouts.

L.1. Successful Navigation
Exploration behavior. When entering an unfamiliar
room, the agent typically performs a brief 360-degree
scan—often multiple partial rotations—before committing
to a direction. VLD encourages movement toward head-
ings with lower predicted distances: as the agent rotates, it
evaluates several candidate viewpoints, compares predicted
distances, and then proceeds along the direction with the
minimum value. See Figure 17 for an illustration.
Detecting and approaching the goal. In successful roll-
outs, the agent eventually encounters partial visual over-
lap with the goal image. At this moment, VLD confidence
sharply increases while the predicted distance drops, giving
the policy a decisive signal to commit to the correct direc-
tion. Figure 18 shows a sequence illustrating this behavior.

L.2. Failure Cases
To better characterize how and why navigation attempts fail,
we categorize all unsuccessful episodes into three primary
failure modes. Table 12 summarizes their relative frequen-
cies. The majority of failures arise from time-outs (62%),
followed by near-match cases (29%), and ambiguous or un-
informative goal images (9%).

Table 12. Distribution of navigation failure modes. Percentages
are computed over all unsuccessful episodes.

Failure Type Percentage (%)

Time-out failure 62
Near-match failure 29
Bad or uninformative goal 9

We visualize representative examples of these failure
modes in Figure 19.

(1) Time-out failures. Most failures arise from trajecto-
ries where the agent becomes stuck exploring visually sim-
ilar but spatially incorrect regions. Equipping the agent
with explicit memory—either short- or long-term—of pre-
viously visited locations, for example via a topological map
or episodic graph [8, 40], would likely mitigate such fail-
ures (see Figure 19a). However, memory augmentation is
outside the scope of this work, as our focus is on evaluating
VLD as a standalone navigation signal.

(2) Bad or uninformative goal images. A second failure
class stems from task design in the Gibson environment.
As goal viewpoints are sampled from random orientations,
some goal images are highly ambiguous or visually uninfor-
mative (Figure 19b). In these cases, even an ideal distance
function would struggle, as the target may not correspond
to a distinctive or semantically meaningful observation.

(3) Near-match failures. A third failure mode originates
from the properties of the distance function itself. In these
near-match failures, the agent encounters a view that ap-
pears deceptively similar to the goal image even though
the true goal is still physically distant (Figures 19c–19d).
However, because the policy relies solely on a scalar dis-
tance signal—which is naturally biased toward feature over-
lap—the agent may incorrectly conclude that it has reached
the goal and stop prematurely.

Often, the target object is fully visible from the agent’s
location, but from a different perspective. Depending on the
navigation task specification, one could increase the success
radius threshold such that these situations can be classified
as successful (which could be justified since in these cases
the agent has reached a position where the goal content is
clearly seen), which could additionally boost the success
rate of our method.
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(a) The agent enters a new space with no immediate cues toward the goal.
Observation Goal Image Top-Down Map VLD over Time
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(b) It performs an initial sweep, collecting VLD predictions across multiple headings.
Observation Goal Image Top-Down Map VLD over Time

1.0 

0.5 

0.0 

0 

-- VLD 

I 

50 100 150 

(c) A full rotation provides a broader set of viewpoints for comparing predicted distances.
Observation Goal Image Top-Down Map VLD over Time
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(d) The agent commits to the direction with the lowest VLD-predicted distance and continues moving.

Figure 17. Exploration driven by VLD. The policy uses VLD as a scalar navigation signal, rotating and evaluating multiple viewpoints
before selecting an exploration direction. Each step shows: (i) the agent’s current observation (blue arrow) and the goal position and
orientation (red arrow), (ii) the goal image, (iii) a top-down map with the taken trajectory in blue (green shows the optimal path), and (iv)
the plot of VLD-predicted distance and confidence over past steps.
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(a) The agent continues exploring, guided by VLD predictions.
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(b) First partial cue from the goal appears; VLD confidence spikes and predicted distance drops.
Observation Goal Image Top-Down Map VLD over Time
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(c) The agent commits to the identified direction; distance decreases sharply.
Observation Goal Image Top-Down Map VLD over Time
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(d) The goal object is reached and the episode terminates successfully.

Figure 18. Successful navigation. Once partial visual overlap occurs, VLD’s confidence and distance predictions tighten, enabling rapid
convergence to the goal. Each step shows: (i) the agent’s current observation (blue arrow) and the goal position and orientation (red
arrow), (ii) the provided goal image, (iii) a top-down map with executed (blue) and optimal trajectories (green), and (iv) VLD distance and
confidence plots.
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Observation Goal Image Top-Down Map VLD over Time

(a) Timeout: the agent explores but never finds a direction with sufficiently decreasing VLD distance.
Observation Goal Image Top-Down Map VLD over Time
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(b) Ambiguous goal image induces misalignment between the intended and perceived target.
Observation Goal Image Top-Down Map VLD over Time
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(c) Near-match failure: the observation looks deceptively similar to the goal image, but the true goal is physically distant.
Observation Goal Image Top-Down Map VLD over Time
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(d) Another near-match failure: visual similarity misleads the policy despite incorrect spatial alignment.

Figure 19. Failure cases. Most failures arise from visually deceptive near-matches, ambiguous goal definitions, or insufficient memory
and capacity for long-horizon exploration. Each example shows: (i) the agent’s current observation (blue arrow) and the goal position and
orientation (red arrow), (ii) the goal image, (iii) the top-down map with the executed (gradient color from dark blue at the start, to red color
at the steps close to max steps limit) and optimal paths (green), and (iv) the VLD distance/confidence trace.
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