Creating Visualization Markers#
Visualization markers are useful to debug the state of the environment. They can be used to visualize the frames, commands, and other information in the simulation.
While Isaac Sim provides its own omni.isaac.debug_draw
extension, it is limited to rendering only
points, lines and splines. For cases, where you need to render more complex shapes, you can use the
markers.VisualizationMarkers
class.
This guide is accompanied by a sample script markers.py
in the IsaacLab/source/standalone/demos
directory.
Code for markers.py
1# Copyright (c) 2022-2024, The Isaac Lab Project Developers.
2# All rights reserved.
3#
4# SPDX-License-Identifier: BSD-3-Clause
5
6"""This script demonstrates different types of markers.
7
8.. code-block:: bash
9
10 # Usage
11 ./isaaclab.sh -p source/standalone/demos/markers.py
12
13"""
14
15"""Launch Isaac Sim Simulator first."""
16
17import argparse
18
19from omni.isaac.lab.app import AppLauncher
20
21# add argparse arguments
22parser = argparse.ArgumentParser(description="This script demonstrates different types of markers.")
23# append AppLauncher cli args
24AppLauncher.add_app_launcher_args(parser)
25# parse the arguments
26args_cli = parser.parse_args()
27
28# launch omniverse app
29app_launcher = AppLauncher(args_cli)
30simulation_app = app_launcher.app
31
32"""Rest everything follows."""
33
34import torch
35
36import omni.isaac.lab.sim as sim_utils
37from omni.isaac.lab.markers import VisualizationMarkers, VisualizationMarkersCfg
38from omni.isaac.lab.sim import SimulationContext
39from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR, ISAACLAB_NUCLEUS_DIR
40from omni.isaac.lab.utils.math import quat_from_angle_axis
41
42
43def define_markers() -> VisualizationMarkers:
44 """Define markers with various different shapes."""
45 marker_cfg = VisualizationMarkersCfg(
46 prim_path="/Visuals/myMarkers",
47 markers={
48 "frame": sim_utils.UsdFileCfg(
49 usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/frame_prim.usd",
50 scale=(0.5, 0.5, 0.5),
51 ),
52 "arrow_x": sim_utils.UsdFileCfg(
53 usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/arrow_x.usd",
54 scale=(1.0, 0.5, 0.5),
55 visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 1.0)),
56 ),
57 "cube": sim_utils.CuboidCfg(
58 size=(1.0, 1.0, 1.0),
59 visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)),
60 ),
61 "sphere": sim_utils.SphereCfg(
62 radius=0.5,
63 visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)),
64 ),
65 "cylinder": sim_utils.CylinderCfg(
66 radius=0.5,
67 height=1.0,
68 visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 0.0, 1.0)),
69 ),
70 "cone": sim_utils.ConeCfg(
71 radius=0.5,
72 height=1.0,
73 visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 1.0, 0.0)),
74 ),
75 "mesh": sim_utils.UsdFileCfg(
76 usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd",
77 scale=(10.0, 10.0, 10.0),
78 ),
79 "mesh_recolored": sim_utils.UsdFileCfg(
80 usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd",
81 scale=(10.0, 10.0, 10.0),
82 visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.25, 0.0)),
83 ),
84 "robot_mesh": sim_utils.UsdFileCfg(
85 usd_path=f"{ISAACLAB_NUCLEUS_DIR}/Robots/ANYbotics/ANYmal-D/anymal_d.usd",
86 scale=(2.0, 2.0, 2.0),
87 visual_material=sim_utils.GlassMdlCfg(glass_color=(0.0, 0.1, 0.0)),
88 ),
89 },
90 )
91 return VisualizationMarkers(marker_cfg)
92
93
94def main():
95 """Main function."""
96 # Load kit helper
97 sim = SimulationContext(sim_utils.SimulationCfg(dt=0.01))
98 # Set main camera
99 sim.set_camera_view([0.0, 18.0, 12.0], [0.0, 3.0, 0.0])
100
101 # Spawn things into stage
102 # Lights
103 cfg = sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75))
104 cfg.func("/World/Light", cfg)
105
106 # create markers
107 my_visualizer = define_markers()
108
109 # define a grid of positions where the markers should be placed
110 num_markers_per_type = 5
111 grid_spacing = 2.0
112 # Calculate the half-width and half-height
113 half_width = (num_markers_per_type - 1) / 2.0
114 half_height = (my_visualizer.num_prototypes - 1) / 2.0
115 # Create the x and y ranges centered around the origin
116 x_range = torch.arange(-half_width * grid_spacing, (half_width + 1) * grid_spacing, grid_spacing)
117 y_range = torch.arange(-half_height * grid_spacing, (half_height + 1) * grid_spacing, grid_spacing)
118 # Create the grid
119 x_grid, y_grid = torch.meshgrid(x_range, y_range, indexing="ij")
120 x_grid = x_grid.reshape(-1)
121 y_grid = y_grid.reshape(-1)
122 z_grid = torch.zeros_like(x_grid)
123 # marker locations
124 marker_locations = torch.stack([x_grid, y_grid, z_grid], dim=1)
125 marker_indices = torch.arange(my_visualizer.num_prototypes).repeat(num_markers_per_type)
126
127 # Play the simulator
128 sim.reset()
129 # Now we are ready!
130 print("[INFO]: Setup complete...")
131
132 # Yaw angle
133 yaw = torch.zeros_like(marker_locations[:, 0])
134 # Simulate physics
135 while simulation_app.is_running():
136 # rotate the markers around the z-axis for visualization
137 marker_orientations = quat_from_angle_axis(yaw, torch.tensor([0.0, 0.0, 1.0]))
138 # visualize
139 my_visualizer.visualize(marker_locations, marker_orientations, marker_indices=marker_indices)
140 # roll corresponding indices to show how marker prototype can be changed
141 if yaw[0].item() % (0.5 * torch.pi) < 0.01:
142 marker_indices = torch.roll(marker_indices, 1)
143 # perform step
144 sim.step()
145 # increment yaw
146 yaw += 0.01
147
148
149if __name__ == "__main__":
150 # run the main function
151 main()
152 # close sim app
153 simulation_app.close()
Configuring the markers#
The VisualizationMarkersCfg
class provides a simple interface to configure
different types of markers. It takes in the following parameters:
prim_path
: The corresponding prim path for the marker class.markers
: A dictionary specifying the different marker prototypes handled by the class. The key is the name of the marker prototype and the value is its spawn configuration.
Note
In case the marker prototype specifies a configuration with physics properties, these are removed. This is because the markers are not meant to be simulated.
Here we show all the different types of markers that can be configured. These range from simple shapes like cones and spheres to more complex geometries like a frame or arrows. The marker prototypes can also be configured from USD files.
marker_cfg = VisualizationMarkersCfg(
prim_path="/Visuals/myMarkers",
markers={
"frame": sim_utils.UsdFileCfg(
usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/frame_prim.usd",
scale=(0.5, 0.5, 0.5),
),
"arrow_x": sim_utils.UsdFileCfg(
usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/UIElements/arrow_x.usd",
scale=(1.0, 0.5, 0.5),
visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 1.0)),
),
"cube": sim_utils.CuboidCfg(
size=(1.0, 1.0, 1.0),
visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0)),
),
"sphere": sim_utils.SphereCfg(
radius=0.5,
visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)),
),
"cylinder": sim_utils.CylinderCfg(
radius=0.5,
height=1.0,
visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 0.0, 1.0)),
),
"cone": sim_utils.ConeCfg(
radius=0.5,
height=1.0,
visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 1.0, 0.0)),
),
"mesh": sim_utils.UsdFileCfg(
usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd",
scale=(10.0, 10.0, 10.0),
),
"mesh_recolored": sim_utils.UsdFileCfg(
usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd",
scale=(10.0, 10.0, 10.0),
visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.25, 0.0)),
),
"robot_mesh": sim_utils.UsdFileCfg(
usd_path=f"{ISAACLAB_NUCLEUS_DIR}/Robots/ANYbotics/ANYmal-D/anymal_d.usd",
scale=(2.0, 2.0, 2.0),
visual_material=sim_utils.GlassMdlCfg(glass_color=(0.0, 0.1, 0.0)),
),
},
)
Drawing the markers#
To draw the markers, we call the visualize
method. This method takes in
as arguments the pose of the markers and the corresponding marker prototypes to draw.
# rotate the markers around the z-axis for visualization
marker_orientations = quat_from_angle_axis(yaw, torch.tensor([0.0, 0.0, 1.0]))
# visualize
my_visualizer.visualize(marker_locations, marker_orientations, marker_indices=marker_indices)
# roll corresponding indices to show how marker prototype can be changed
if yaw[0].item() % (0.5 * torch.pi) < 0.01:
marker_indices = torch.roll(marker_indices, 1)
Executing the Script#
To run the accompanying script, execute the following command:
./isaaclab.sh -p source/standalone/demos/markers.py
The simulation should start, and you can observe the different types of markers arranged in a grid pattern. The markers will rotating around their respective axes. Additionally every few rotations, they will roll forward on the grid.
To stop the simulation, close the window, or use Ctrl+C
in the terminal.