Training with an RL Agent#
In the previous tutorials, we covered how to define an RL task environment, register
it into the gym
registry, and interact with it using a random agent. We now move
on to the next step: training an RL agent to solve the task.
Although the envs.ManagerBasedRLEnv
conforms to the gymnasium.Env
interface,
it is not exactly a gym
environment. The input and outputs of the environment are
not numpy arrays, but rather based on torch tensors with the first dimension being the
number of environment instances.
Additionally, most RL libraries expect their own variation of an environment interface.
For example, Stable-Baselines3 expects the environment to conform to its
VecEnv API which expects a list of numpy arrays instead of a single tensor. Similarly,
RSL-RL, RL-Games and SKRL expect a different interface. Since there is no one-size-fits-all
solution, we do not base the envs.ManagerBasedRLEnv
on any particular learning library.
Instead, we implement wrappers to convert the environment into the expected interface.
These are specified in the omni.isaac.lab_tasks.utils.wrappers
module.
In this tutorial, we will use Stable-Baselines3 to train an RL agent to solve the cartpole balancing task.
Caution
Wrapping the environment with the respective learning framework’s wrapper should happen in the end,
i.e. after all other wrappers have been applied. This is because the learning framework’s wrapper
modifies the interpretation of environment’s APIs which may no longer be compatible with gymnasium.Env
.
The Code#
For this tutorial, we use the training script from Stable-Baselines3 workflow in the
source/standalone/workflows/sb3
directory.
Code for train.py
1# Copyright (c) 2022-2024, The Isaac Lab Project Developers.
2# All rights reserved.
3#
4# SPDX-License-Identifier: BSD-3-Clause
5
6"""Script to train RL agent with Stable Baselines3.
7
8Since Stable-Baselines3 does not support buffers living on GPU directly,
9we recommend using smaller number of environments. Otherwise,
10there will be significant overhead in GPU->CPU transfer.
11"""
12
13"""Launch Isaac Sim Simulator first."""
14
15import argparse
16import sys
17
18from omni.isaac.lab.app import AppLauncher
19
20# add argparse arguments
21parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.")
22parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
23parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
24parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
25parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
26parser.add_argument("--task", type=str, default=None, help="Name of the task.")
27parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
28parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
29# append AppLauncher cli args
30AppLauncher.add_app_launcher_args(parser)
31# parse the arguments
32args_cli, hydra_args = parser.parse_known_args()
33# always enable cameras to record video
34if args_cli.video:
35 args_cli.enable_cameras = True
36
37# clear out sys.argv for Hydra
38sys.argv = [sys.argv[0]] + hydra_args
39
40# launch omniverse app
41app_launcher = AppLauncher(args_cli)
42simulation_app = app_launcher.app
43
44"""Rest everything follows."""
45
46import gymnasium as gym
47import numpy as np
48import os
49from datetime import datetime
50
51from stable_baselines3 import PPO
52from stable_baselines3.common.callbacks import CheckpointCallback
53from stable_baselines3.common.logger import configure
54from stable_baselines3.common.vec_env import VecNormalize
55
56from omni.isaac.lab.envs import DirectRLEnvCfg, ManagerBasedRLEnvCfg
57from omni.isaac.lab.utils.dict import print_dict
58from omni.isaac.lab.utils.io import dump_pickle, dump_yaml
59
60import omni.isaac.lab_tasks # noqa: F401
61from omni.isaac.lab_tasks.utils.hydra import hydra_task_config
62from omni.isaac.lab_tasks.utils.wrappers.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
63
64
65@hydra_task_config(args_cli.task, "sb3_cfg_entry_point")
66def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg, agent_cfg: dict):
67 """Train with stable-baselines agent."""
68 # override configurations with non-hydra CLI arguments
69 env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
70 agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
71 # max iterations for training
72 if args_cli.max_iterations is not None:
73 agent_cfg["n_timesteps"] = args_cli.max_iterations * agent_cfg["n_steps"] * env_cfg.scene.num_envs
74
75 # set the environment seed
76 # note: certain randomizations occur in the environment initialization so we set the seed here
77 env_cfg.seed = agent_cfg["seed"]
78
79 # directory for logging into
80 log_dir = os.path.join("logs", "sb3", args_cli.task, datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
81 # dump the configuration into log-directory
82 dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
83 dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
84 dump_pickle(os.path.join(log_dir, "params", "env.pkl"), env_cfg)
85 dump_pickle(os.path.join(log_dir, "params", "agent.pkl"), agent_cfg)
86
87 # post-process agent configuration
88 agent_cfg = process_sb3_cfg(agent_cfg)
89 # read configurations about the agent-training
90 policy_arch = agent_cfg.pop("policy")
91 n_timesteps = agent_cfg.pop("n_timesteps")
92
93 # create isaac environment
94 env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
95 # wrap for video recording
96 if args_cli.video:
97 video_kwargs = {
98 "video_folder": os.path.join(log_dir, "videos", "train"),
99 "step_trigger": lambda step: step % args_cli.video_interval == 0,
100 "video_length": args_cli.video_length,
101 "disable_logger": True,
102 }
103 print("[INFO] Recording videos during training.")
104 print_dict(video_kwargs, nesting=4)
105 env = gym.wrappers.RecordVideo(env, **video_kwargs)
106 # wrap around environment for stable baselines
107 env = Sb3VecEnvWrapper(env)
108
109 if "normalize_input" in agent_cfg:
110 env = VecNormalize(
111 env,
112 training=True,
113 norm_obs="normalize_input" in agent_cfg and agent_cfg.pop("normalize_input"),
114 norm_reward="normalize_value" in agent_cfg and agent_cfg.pop("normalize_value"),
115 clip_obs="clip_obs" in agent_cfg and agent_cfg.pop("clip_obs"),
116 gamma=agent_cfg["gamma"],
117 clip_reward=np.inf,
118 )
119
120 # create agent from stable baselines
121 agent = PPO(policy_arch, env, verbose=1, **agent_cfg)
122 # configure the logger
123 new_logger = configure(log_dir, ["stdout", "tensorboard"])
124 agent.set_logger(new_logger)
125
126 # callbacks for agent
127 checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2)
128 # train the agent
129 agent.learn(total_timesteps=n_timesteps, callback=checkpoint_callback)
130 # save the final model
131 agent.save(os.path.join(log_dir, "model"))
132
133 # close the simulator
134 env.close()
135
136
137if __name__ == "__main__":
138 # run the main function
139 main()
140 # close sim app
141 simulation_app.close()
The Code Explained#
Most of the code above is boilerplate code to create logging directories, saving the parsed configurations, and setting up different Stable-Baselines3 components. For this tutorial, the important part is creating the environment and wrapping it with the Stable-Baselines3 wrapper.
There are three wrappers used in the code above:
gymnasium.wrappers.RecordVideo
: This wrapper records a video of the environment and saves it to the specified directory. This is useful for visualizing the agent’s behavior during training.wrappers.sb3.Sb3VecEnvWrapper
: This wrapper converts the environment into a Stable-Baselines3 compatible environment.stable_baselines3.common.vec_env.VecNormalize: This wrapper normalizes the environment’s observations and rewards.
Each of these wrappers wrap around the previous wrapper by following env = wrapper(env, *args, **kwargs)
repeatedly. The final environment is then used to train the agent. For more information on how these
wrappers work, please refer to the Wrapping environments documentation.
The Code Execution#
We train a PPO agent from Stable-Baselines3 to solve the cartpole balancing task.
Training the agent#
There are three main ways to train the agent. Each of them has their own advantages and disadvantages. It is up to you to decide which one you prefer based on your use case.
Headless execution#
If the --headless
flag is set, the simulation is not rendered during training. This is useful
when training on a remote server or when you do not want to see the simulation. Typically, it speeds
up the training process since only physics simulation step is performed.
./isaaclab.sh -p source/standalone/workflows/sb3/train.py --task Isaac-Cartpole-v0 --num_envs 64 --headless
Headless execution with off-screen render#
Since the above command does not render the simulation, it is not possible to visualize the agent’s
behavior during training. To visualize the agent’s behavior, we pass the --enable_cameras
which
enables off-screen rendering. Additionally, we pass the flag --video
which records a video of the
agent’s behavior during training.
./isaaclab.sh -p source/standalone/workflows/sb3/train.py --task Isaac-Cartpole-v0 --num_envs 64 --headless --video
The videos are saved to the logs/sb3/Isaac-Cartpole-v0/<run-dir>/videos/train
directory. You can open these videos
using any video player.
Interactive execution#
While the above two methods are useful for training the agent, they don’t allow you to interact with the
simulation to see what is happening. In this case, you can ignore the --headless
flag and run the
training script as follows:
./isaaclab.sh -p source/standalone/workflows/sb3/train.py --task Isaac-Cartpole-v0 --num_envs 64
This will open the Isaac Sim window and you can see the agent training in the environment. However, this
will slow down the training process since the simulation is rendered on the screen. As a workaround, you
can switch between different render modes in the "Isaac Lab"
window that is docked on the bottom-right
corner of the screen. To learn more about these render modes, please check the
sim.SimulationContext.RenderMode
class.
Viewing the logs#
On a separate terminal, you can monitor the training progress by executing the following command:
# execute from the root directory of the repository
./isaaclab.sh -p -m tensorboard.main --logdir logs/sb3/Isaac-Cartpole-v0
Playing the trained agent#
Once the training is complete, you can visualize the trained agent by executing the following command:
# execute from the root directory of the repository
./isaaclab.sh -p source/standalone/workflows/sb3/play.py --task Isaac-Cartpole-v0 --num_envs 32 --use_last_checkpoint
The above command will load the latest checkpoint from the logs/sb3/Isaac-Cartpole-v0
directory. You can also specify a specific checkpoint by passing the --checkpoint
flag.